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Preface 
 
The software package MAG-MIX provides computer programs for the analysis of 
magnetization curves and coercivity distributions. This first release includes the 
programs CODICA and GECA. CODICA is a program that calculates the coercivity 
distribution of a magnetization curve and estimates the measurement errors. GECA 
is a program for modeling a coercivity distribution as a linear combination of spe-
cial model functions that are supposed to represent the coercivity distribution of 
specific groups of magnetic particles, called components. 
 
The analysis of magnetization curves is a relatively recent and fast-developing me-
thod used in environmental and rock magnetic studies to characterize materials 
that are a mixture of different magnetic minerals. The success of “unmixing” such 
materials depends strongly on our knowledge about the fundamentals of mag-
netization processes and coercivity distributions. This knowledge is evolving rapid-
ly, and might provide more efficient and easy-to-use unmixing methods in the 
future. 
 
The MAG-MIX manuals contain detailed instructions for using the programs and 
provide basic knowledge about the theory of magnetization curves, coercivity 
distributions and component analysis. 
 
MAG-MIX will be updated periodically. A profound revision of GECA that takes into 
account recent progess in understanding coercivity distributions is already plan-
ned. Other programs for the automated analysis of a large number of similar sam-
ples – such as those collected from a sediment profile – will be added in the future. 
 
Your feedback is important to improve the MAG-MIX programs. If you encounter 
problems in using the programs or if you have suggestions, please write me 
(eglix007@umn.edu). Many suggestions of “early” users have been already taken 
into consideration in the present version of CODICA. 
 
 
 
  Ramon Egli 
  Minneapolis, april 4, 2005 
 
 
 
 
 
 
 
 

mailto:eglix007@umn.edu
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Preface to CODICA 5.0 

The previous versions of CODICA have been used to analyze magnetization curves of the most 
different materials measured with various instruments. This program was first conceived in 2000 
as a particular “filter” for the analysis of natural sediment samples. By that time, the knowledge 
related to the measurement of magnetization curves for the purpose of component analysis was 
based on the seminal papers of Robertson and France [1994] and Kruiver et al. [2001]. Since then, a 
few hundred sediment samples have been measured in detail and analyzed with CODICA. The 
experience collected led to interesting conclusions about the occurrence of magnetic 
components in sediments [Egli, 2004a,b,c] and gave raise to the need of a user-friendlier and 
stable version of the program which is accessible also to non-specialized users. Several bugs have 
been already corrected in version 4. The use of CODICA for the analysis of different types of 
magnetic materials generated occasionally critical errors. The main problems reported by users 
were: 

• The incapability of reading a data file stored directly in a disk partition and not in a folder (e.g. 
C:/myfile.dat  instead of  C:/myfolder/myfile.dat). 

• The instability of the fitting routines included in CODICA, which led to fatal error in some cases, 
for example with particular materials such as magnetic tapes. 

• The need to enter manually special fitting parameters whose meaning is not intuitive, and the 
need of special characters such as “{“, which are not available on all keyboards. 

A profound revision of CODICA has been undertaken to make the program as most user-friendly, 
automated and stable as possible. The result is a fully new version where the user is asked only to 
control the degree of “smoothing” of the final result. Experienced users will appreciate the fully 
automated optimization of all the mathematical steps required to fit a magnetization curve and 
calculate the corresponding coercivity distribution. New users will not need to train intensively 
with CODICA before getting useful results. CODICA 5.0 can be installed exactly like the previous 
version. Owners of a previous version may just replace the old source code file Codica.m with 
the new one. 

In the following, a detailed list of the improvements and changes made in CODICA 5.0 is given. 

• Acquisition curves are analyzed as such and not transformed into demagnetization curves. 

• The error estimation does no longer require the evaluation of all measurement errors sources 
by the user. A long experience on measuring magnetization curves demonstrated that the 
sources of measurement errors are extremely complex and difficult to predict. The errors are 
now estimated empirically during the analysis of the magnetization curve. 

• Various errors sources, such as the lack of measuring points at critical regions of the magneti-
zation curve and digital truncation effects, are recognized by CODICA. A warning message is 
produced and the negative effects of the identified error sources are minimized as far as 
possible. 

• All rescaling procedures applied by CODICA are now fully automated. The user has the pos-
sibility of modifying the magnetic field scaling; however, a manual correction is almost never 
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required. CODICA also analyzes the distribution of the measurement points and suggests 
improvements for better results. 

• The Butterworth low-pass filter has been replaced with a least-squares collocation method ba-
sed on Moritz [1978]. Least-squares collocation is a very general and efficient method used for 
the analysis of signals and potentials in geodesy. 

• The user can choose the range of fields in which the coercivity distribution is calculated. This is 
a useful option if the results are used for component analysis. 
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1. Introduction 

Why magnetization curves? 

Rocks and sediments inevitably contain mixtures of magnetic minerals, grain sizes, and weathe-
ring states. Most rock magnetic interpretation techniques rely on a set of value parameters, such 
as susceptibility and isothermal/anhysteretic remanent magnetization (ARM or IRM). These para-
meters are usually interpreted in terms of mineralogy and domain state of the magnetic particles. 
In some cases, such interpretation of natural samples can be misleading or inconclusive. A less 
constrained approach to magnetic mineralogy models is based on the analysis of magnetization 
curves, which are decomposed into a set of elementary contributions. Each contribution is called 
a magnetic component, and characterizes a specific set of magnetic grains with a unimodal distri-
bution of physical and chemical properties. Magnetic components are related to specific biogeo-
chemical signatures rather than representing traditional categories, such as SD magnetite. This 
unconventional approach can be regarded as a kind of principal component analysis (PCA) that 
gives a direct link to the interpretation of natural processes on a multidisciplinary level. Since 
magnetic components rarely occur alone in natural samples, unmixing techniques and rock 
magnetic models are interdependent. 

Unmixing problems dealing with unknown components are strongly nonlinear and have usually 
multiple solutions. Therefore an initial guess of the model parameters is required. This guess 
relies on additional information about the geological and geochemical history of the sample. 
Valuable information for rock magnetic and environmental studies can be obtained directly from 
the coercivity distribution of the sample, which provides a richness of details hidden in the 
measurement curve (Fig. 1).  

 

Fig. 1 (next page). Some applications of CODICA to rock magnetic and environmental studies. The left plots show 
the original measurements, the right plots are coercivity distributions calculated with CODICA. The thickness of the 
curves corresponds to the error estimate of CODICA. (a) AF demagnetization curves of a Tiva Canyon Tuff that 
contains acicular magnetite in the SP/SSD grain size range. Measurements have been started 8.5 and 160 hours after 
an ARM was imparted (see the IRM Quaterly, 14(3), 2004, for more details about the Tiva Canyon Tuff). (b) Coercivity 
distributions calculated from (a). Notice the bimodal character of the 8.5 h curve, showing the magnetization of 
viscous and more stable particles. The difference of the to curves (inset) shows the coercivity distribution of the 
viscous particles with relaxation times between 8.5 and 160 h. (c) Modified Lowrie-Fuller test performed on a sample 
of intact MV1 magnetotactic bacteria, and (d) the corresponding coercivity distributions of ARM and IRM. Notice that 
the two magnetizations are identical except for a low-coercivity IRM contribution which may be related to collapsed 
or not well formed chains of magnetosomes (sample kindly provided by D. Bazylinski). The properties of this low-
coercivity contribution are very similar to those of clustered SD particles. (e) AF demagnetization of an ARM imparted 
to an anoxic sediment from lake Baldeggersee, Switzerland (see R. Egli, Physics and Chemistry of the Earth, 29, 869-
884, 2004, for a detailed discussion about magentic measurements on this lake). (f) Coecivity distribution calculated 
from (e), and results of a component analysis (colored areas). Three components can be clearly distinguished: the lo-
west coercivity component has been attributed to detrital magnetite, the middle coercivity component to magneto-
somes that survived reductive dissolution, and the high coercivity component to a high coercivity mineral such as 
hematite. (g) AF demagnetization curves of ARM from samples of particulate matter collected from the atmosphere 
at three places in the city of Zürich, Switzerland (see S. Spassov et al., Geophysical Journal International, 159, 555-564, 
2004). (h) The coercivity distributions show the increasing contribution of a high coercivity component in more 
polluted areas (GMA: forest near Zürich, WDK: center of Zürich, GUB: highway tunnel). 
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What is CODICA? 

CODICA (COercivity DIstribution CAlculator) is a program for the detailed analysis of magneti-
zation curves and the calculation of coercivity distributions. CODICA takes advantage of the 
universal properties of magnetization curves and uses advanced mathematical tools to model 
magnetization curves and measurements errors without using restrictive assumptions. The calcu-
lated coercivity distributions are free of distortions and typical artifacts of common filtering 
methods. These are intrinsically inadequate for the analysis of asymptotic functions such as mag-
netization curves. The confidence limits provided with the results are particularly useful for 
evaluating the significance of multicomponent mixing models based on coercivity distributions. 
Fig. 2 shows a comparison between the performance of CODICA and that of a commercial soft-
ware built-in filtering method. 

Fig. 2: Performance comparison between CODICA and a 
commercial software built-in filtering method. (a) An artifi-
cial magnetization curve was created by simulating the 
magnetization curve (solid line) of a logarithmic Gaussian 
coercivity distribution. Measurements (dots) has been cal-
culated using a random number generator, and assuming 
Gaussian errors with a standard deviation of 0.002 for the 
magnetization measurements, and a standard deviation of 
2% for the magnetic field. The red curves in (b) and (c) 
show the coercivity distribution calculated from the simu-
lated measurements in (a), using the software Origin and 
CODICA, respectively. The black curve in both plot is the 
error-free logarithmic Gaussian distribution used to 
simulate the measurements. The coercivity distribution 
calculated using Origin was obtained by first-order nume-
rical differentiation and subsequent 5 points FFT low-pass 
filtering. FFT low-pass filters based on a different number 
of points gave worse results. Notice the distortions at low 
fields in (b). 
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How does CODICA work? 

The method used by CODICA is based on three fundamental properties that characterize any 
magnetization curve: 

1) The curve is monotonic (it always either increases or decreases over the entire range of fields), 

2) The curve has a horizontal asymptote that is approached – but not reached – at high fields (i.e. 
the sample saturates at high fields), 

3) The slope of the curve at zero field is always finite (i.e. the sample has a stable magnetization in 
a zero field) 

CODICA proceeds essentially on three steps that are shown in Fig. 3 with a simple example. First, 
a set of scale transformations is applied to the field and the magnetization (Fig. 3b). After field 
and magnetization scales have been changed, the magnetization curve becomes close to straight 
line, and is said to be linearized (Fig. 3c). A so-called residual curve is obtained after removing the 
linear trend of the scaled curve by subtraction of a polynomial (Fig. 3d). The residual curve has 
the characteristics of a stochastic signal, because it oscillates more or less randomly around a 
mean value of zero. The wiggles arise from small asymmetries of the original magnetization cur-
ve, as well as from the measurement errors. Measurement errors are easy to recognize in the 
residual curve, since they are highly amplified. This gives you the possibility to optimize and 
correct your experiments for optimal results. The residual curve is then fitted with a method cal-
led least-squares collocation, which is a particularly effective model for stochastic (non-periodic) 
signals (Fig. 3d). The interpolated residual curve – supposed to be free of measurement errors – is 
transformed back into a magnetization curve (Fig. 3e) and its first derivative, called coercivity 
distribution (Fig. 3f). The least-squares collocation method provides also a way to estimate the 
error associated to the operations described above and thus provides confidence limits for the 
results it produces. 

Is CODICA difficult to use? 

In the previous versions of CODICA, the steps described above had to be controlled by the user, 
which was asked to enter various rather cryptic parameters. As a result, the user was required to 
have some mathematical skills and a lot of endurance. This new version of CODICA is fully auto-
mated. You have to decide only the degree of smoothing used to interpolate the measurements, 
and this operation is rather intuitive. The complete analysis of a magnetization curve takes no 
more than a couple of minutes – in addition to the computation time in case of curves with a 
large number of measurements. To take full advantage of CODICA, read carefully this manual, 
which contains a practical guide through each step of the program with a real example. The most 
interested users can read the technical reference, which contains detailed information about the 
operations performed by CODICA and their theoretical background. However, this information is 
not necessary for a standard use of CODICA. 
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Fig. 3. The working principle of CODICA on a simple example (sample kindly provided by Christoph Geiss). (a) 
Original AF demagnetization curve showing a characteristic MD shape. (b) The field axis is rescaled in order to get a 
sigmoidal-shaped curve. To do so, the scale is expanded at small fields. (c) The magnetization is now rescaled in 
order to linearize the magnetization curve. To obtain this result, CODICA expands the magnetization scale near the 
beginning and the end of the magnetization curve. The red line is the linear best-fit to the data. (d) The linear trend 
of the rescaled curve (red line in c) is subtracted to obtain the so-called residuals. As it can be clearly seen, the 
measurement errors are quite evident in this plot. The red curve is a best-fit of the residuals that CODICA obtains 
from an autocorrelation model. (e) A model for the “error-free” magnetization curve (red) is obtained from the fitted 
residuals (red curve in d), by inverting the mathematical functions used to transform the original measurement (a) 
into the residuals (d). (f) A coercivity distribution is calculated as the analytical derivative of (e). The thickness of the 
line corresponds to the estimated confidence limits of the coercivity distribution. CODICA calculates the coercivity 
distribution on a logarithmic field scale, as in (f), as well as on a linear scale. 
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Why is a compiled version of CODICA not available? 

To run CODICA you need Mathematica 5.0 or a later version to be installed on a Windows system. 
Of course, a compiled version of CODICA would be more attractive. However, CODICA uses highly 
sophisticated mathematical routines that are embedded in Mathematica and are not easy to 
include in a compiled program. 

Does CODICA make miracles? 

Some users may be surprised by the poor performance of CODICA on some typical “paleo-
magnetic quality” magnetization curves, which can be obtained with standard experiments. 
However, you should always consider that CODICA – as any other software – does not add a bit of 
information to your original measurements: bad measurements will give poorly defined coerci-
vity distributions, affected by large errors. However, CODICA finds the best fit to your data and 
helps to identify the reason of poor results. You can repeat the measurements with a better 
sample and with optimized magnetization/demagnetization steps. This manual contains a sec-
tion that helps you in optimizing your measurements. 

Does CODICA contain bugs? 

Maybe! The program code is almost 4000 lines long and its performance is not guaranteed under 
all circumstances. However, all possible user-controlled options of CODICA have been tested on 
many measurements. If a result is obtained, it is guaranteed to be correct (i.e. free of coarse errors 
such as units or scale errors).  
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2. Before using CODICA: some suggestions to optimize your measurements 

Why remanence measurements? 

The measurement of remanence curves is intrinsically more difficult than in-field measurements, 
such as hysteresis loops. There are essentially two reasons that explain this fact. The first reason 
resides essentially in the technical difficulty of switching on and off a magnetic field produced by 
an electromagnet in an exactly reproducible manner. In fact, many electromagnet control sys-
tems produce a slightly positive overshoot before reaching the programmed field intensity or a 
slightly negative overshoot when the field is turned off. On the other hand, pulse magnetizer be-
come slightly resonant at high fields, so that small negative fields may be produced after the 
main discharge peak. The second reason is that some samples are themselves a source of error, 
especially when the remanent magnetization to be measured is much smaller than the saturation 
magnetization of the sample. In such cases, the smallest amount of magnetization induced by 
random variations of the ambient field is sufficient to produce a noticeable effect in the measu-
rements. So, why use remanent magnetization to characterize a sample or to perform a compo-
nent analysis? Component analysis can be performed on any kind of magnetization curves, inclu-
ding hysteresis loops [von Dobeneck, 1996; Carter-Stiglitz et al., 2001]. The problem with hysteresis 
loops is that they cannot be easily unmixed, unless the properties of the individual components 
are known a-priori. Paradoxically, the most suitable curves for component analysis are those 
obtained from weak-field magnetizations, such as ARM and TRM, even if these magnetizations 
are among the most difficult to measure. The advantage of using weak-field magnetizations 
relies on their sensitivity to parameters such as grain size and oxidation state [Egli, 2004].  

Measuring remanent magnetization curves 

Errors in remanent magnetization measurements are mostly of technical nature and can be re-
duced by improving the measuring technique. The standard way of measuring remanent magne-
tization curves has been established in the early story of paleo- and rock magnetism, and under-
went little changes despite the evolution of experimental equipments. A classic (de)magnetiza-
tion curve consists of 10-15 measurement points more or less equally distributed over the coer-
civity range of the sample. Imagine to perform a component analysis with three components on 
such measurements. Each component is described by a 5 parameter model function, and 15 
parameters are needed for the three components. The number of measurements corresponds 
barely to the number of parameters, and the model is exactly determined. Small measurement 
errors are sufficient to drive such a model into a completely wrong solution! In fact, a model with 
three components and a redundance factor of 5 (five measurements for each model parameter) 
requires 75 measurement points. If you find this number excessive, think about a Day plot: the 
five parameters required (two for the magnetization ratio, two for the coercivity ratio and one for 
the paramagnetic correction) are obtained from hysteresis loops and backfield curves consisting 
of a large number of points. The reason for the difference between the ‘common sense’ accuracy 
of a hysteresis loop and that of a remanent magnetization curve resides in the extra time required 
in the latter case to switch on and off the (de)magnetizing field. Magnetization curves consisting 
of 80 measurements require few minutes to 5 hours running time, depending on the (de)mag-
netization device and the degree of automation. An interesting and extremely fast system for the 
acquisition of remanent magnetization curves has been developed by the paleomagnetic labora-
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tory of the Kazan State University, using a self-made equipment informally named ‘Pashameter’ 
after its constructor [Jasonov et al., 1998]. With this equipment, complete acquisition curves with 
thousands of measurements up to 500 mT can be obtained in a few minutes (Fig. 4). 
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Fig. 4. Example of a IRM acquisition curve measured with the coercivity spectrometer described in Jasonov et al., 
1998 (courtesy of R. Enkin), and subsequent coercivity analysis with CODICA. (a) Raw measurements. A typical mea-
surement up to 500 mT consists of 1500 steps acquired in few minutes. (b) The residual curve calculated by CODICA 
shows clearly the measurement errors. The increasing amplitude of these errors at high fields indicates that the ap-
plied magnetic field account for a large portion of the errors. The red line is the fit calculated by CODICA. (c) and (d) 
are the corresponding coercivity distributions calculated on a linear, respectively logarithmic scale. The thickness of 
the curve is proportional to the estimated error, which is also plotted below. Notice that the maximum error of the 
coercivity distribution is less than 4%. The smoothness of the coercivity distribution suggests a single magnetic com-
ponent for this sample. On the logarithmic scale, however, a small contribution from a high-coercivity component is 
suggested by the inflection of the curve above 300 mT. 
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More effective than increasing the number of measurement points is the minimization of the 
experimental errors. These errors arise from (1) magnetometer errors, (2) rounding to an insuf-
ficient number of digits by the acquisition software, (3) errors in the application of the (de)mag-
netizing field, (4) imprecise sample positioning both in the field and in the magnetometer, (5) 
time effects on viscous samples, (6) insufficient shielding of external magnetic perturbations, and 
(7) mechanical unblocking of magnetic grains in strong magnetic fields. In the following, we shall 
briefly discuss some of these experimental errors and how to reduce or avoid them. 

1. Magnetometer errors. They are intrinsic to the magnetometer used. 

2. Digital rounding. Most acquisition softwares give three-digits results which are sufficient for all 
traditional purposes but are likely to produce nasty rounding effects in the saturation region of 
detailed magnetization curves (Fig. 5). SQUID magnetometers have a much higher intrinsic ac-
curacy, which can be exploited by using a 5 digits reading. Some acquisition softwares for the 2G 
cryogenic magnetometer may combine erroneously the flux count and the analog signal. This 
error does not produce noticeable effects on standard measurements, unless the magnetization 
of the sample corresponds to about one flux jump of the SQUID sensor. Such software errors 
have to be removed if a component analysis is performed, regardless of the sample’s intensity. 
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Fig. 5. Example of digital rounding ef-
fects on a magnetization curves (mea-
surement kindly provided by C. Geiss). 
Digital rounding is particularly evident 
in the flat region of the curve (small in-
set). Rounding to 3 digits can introduce 
noticeable errors in the calculation of 
coercivity distributions. CODICA can 
handle digital truncation to minimize 
errors, however, obtaining full-digits 
data is a preferable option. 

 

 

 

3. Errors in the applied field. The precision of the field applied on the sample depends on the 
control unit of the magnet. The field control of large magnets is critical. Pulse magnetizers may 
become slightly underdamped at high fields and produce a small negative field after main 
discharge. This results sometimes in IRM acquisition curves that decrease ant high fields. The 
generation of alternating fields for AF demagnetization is very sensitive to electromagnetic 
interferences. Short-pulsed interferences are cancelled through thermal activations if the decay 
rate of the alternating field is small enough. As a role-of-thumb, avoid decay rates higher than 4 
mT/s. To calculate the decay rate of your equipment, take the peak AF field and divide it by the 
time required by the AF field to decay from its maximum value to zero (do not include the 
ramping-up time!). Some AF demagnetization devices are more precise than other. We noticed 
some systematic small errors produced by the AF demagnetization system of 2G (Fig. 6). These 
errors are not noticeable in standard applications, but are significant when detailed demagneti-
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zation curves must be obtained. We do not know the origin of these errors, but since they are 
systematic, a correction formula is provided (see Appendix B). Pass-trough devices are even more 
critical, since they are faster and sensitive to the speed of the sample through the magnet. 

Fig. 6. (a) Average of 606 AF demag-
netization curves that have been normali-
zed by their initial magnetization. Both AF 
demagnetization and measurements ha-
ve been performed using a 2G cryogenic 
magnetometer with a 300 mT AF demag-
netizing system (AF settings: ramp rate 
=5, dwell time = 3). These curves include 
ARMs and IRMs of different samples with 
magnetic moments spanning over more 
than 6 orders of magnitude. In the avera-
ged curve, random errors are reduced by 
a factor 25 with respect to a single mea-
surement, while systematic errors are un-
affacted. The averaged curve shows dis-
continuities occurring at specific AF peak 
fields (small inset shows the most evident 
discontinuity at 40 mT). This problem in-
dicates some systematic errors in the 
applied field. (b) Coercivity distribution 
calculated by finite differences of the cur-
ve in (a). Discontinuities in (a) shows up as 
distinct peaks in the coercivity distribu-
tion. See Appendix B for an empirical cor-
rection of these errors. 
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4. Positioning errors. The magnetic field produced by electromagnets is homogeneous only in a 
small region. If the dimensions of that region are comparable to those of the sample, a correct 
positioning becomes critical. The same apply to the response function of the magnetometer. 
Keep in mind that an error of 0.1% in both the applied field and the measurement is an upper 
limit for component analysis applications. If the sample is placed by hand at each (de)magneti-
zation step, errors arising from its misorientation are generally not negligible, unless the sample 
fits firmly in a fixed holder, both during field application and measurement. 

5. Time effects. Time effects are a very important and often disregarded error source during the 
measurement of magnetization curves. All samples –regardless of their composition– have a 
time-dependent magnetization (known as magnetic viscosity) and a time-dependent coercivity 
(which is related to Néel’s concept of fluctuation field). Furthermore, the effectiveness of the AF 
demagnetization depends on the decay rate of the alternating field. Thus, time effects influence 
the shape of a coercivity distribution (Fig. 7). Hence, a precise and constant timing of both the 
applied field and the interval between field application and measurement is necessary to obtain 
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good magnetization curves. Precise timing is generally fulfilled by automated measurements. If 
you perform manual measurements, you should always apply the field for, let say, 2 seconds and 
wait a precise amount of time before measuring. Demagnetization curves need an additional 
consideration. Immediately after the magnetization is acquired, there is often a significant vis-
cous decay. We recommend waiting long enough before starting with demagnetization measu-
rements, since the viscous decay of the sample increases the initial gradient of the demagneti-
zation curve, which is erroneously interpreted as a low-coercivity component.  
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Fig. 7. Calculated effects of thermal activation 
effects on the coercivity distribution of a set of 
non-interacting SD particles with a logarithmic 
Gaussian distribution of microcoercivities and 
grain sizes (redrawn from R. Egli, Physics and 
Chemistry of the Earth, 29, 851-867, 2004). The 
dashed (solid) curves indicate the calculated 
coercivity distribution without (with) thermal 
activations. (a) Effect of thermal activations on 
the switching field of the particles, which is 
reduced by an amount called the fluctuation 
field (arrows). This effect also depends on how 
long the (de)magnetizing field is applied. (b) 
Effect of thermal activations on the remanent 
magnetization of the grains. The magnetization 
of grains with a smaller microcoercivity decay 
faster with time (arrows). This effect depends 
also on the time lag between the acquisition of 
a magnetization and its measurement. 

 
 

 

 

 

6. Shielding. Ideally, the sample and the magnetometer should be shielded against external varia-
tions of the magnetic field and other electromagnetic interferences. 

7. Mechanical unlocking. Unconsolidated powder samples may contain magnetic grains that can 
rotate under the influence of a strong magnetic field. Alternating fields are especially effective in 
‘shaking’ lose magnetic grains. Powder samples should be firmly pressed in sample boxes. Empty 
space in the box should be filled with a nonmagnetic material, such as folded, thin plastic foil or 
calcium fluoride. Badly sorted, clay-poor sediments, such as loesses and glacial deposits, are good 
candidates for mechanical unblocking effects. In this case, mix them with at least 40% of a non-
magnetic ‘binding’ material, such as calcium fluoride or wax. 
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3. Basic theory of coercivity distributions: all what you should know 

Coercivity distributions still represent an unusual way to analyze a magnetization curve. Two 
major sources of confusion about coercivity distributions arise from the use of different field 
scales (e.g. linear and logarithmic) and from the related units. The shape of a coercivity distribu-
tion as well as its unit depend on the scale used for the magnetic field. Appendix A reports tables 
for the appropriate units to use for coercivity distributions. In the following, the mathematical 
and physical meaning of a coercivity distribution is discussed. Understanding this meaning is very 
important for a correct interpretation of the results obtained with CODICA. 

Let define the coercivity distribution  of a magnetization curve  as the absolute 
value of the first derivative of : 

( )HM ( )M H
( )M H

( )
( )

M H
H

H
γ

∂
=

∂
M  (1) 

whereby the factor  depends on the type of magnetization curve and accounts for the Stoner-
Wohlfarth relationships in non-interacting SD particles [

γ
Stoner and Wohlfarth, 1948]. Thus,  

for all acquisition and AF demagnetization curves, and  for DC demagnetization curves 
(also called backfield curves). Coercivity distributions can be regarded as the statistical distribu-
tion of so-called switching fields. In some cases, the switching field can be identified with the field 
required to switch the magnetization of a single magnetic particle. This is for example true for an 
assemblage of non-interacting SD grains. However, this simplification does not apply to MD parti-
cles or assemblages of strongly interacting grains. The statistical character of a coercivity distribu-
tion is formalized by assuming  to be proportional to a probability density function (PDF): 

1γ =
1/2γ =

( )HM

0( ) ( )m H M f H=  (2) 

where the proportionality constant  is simply the total magnetization of the sample. Conver-
sely, 

0M
( )f H  can be regarded as the coercivity distribution of a sample with unit magnetization. 

Any PDF ( )f x  can be represented on different scales of x  through a variate transformation 
, where y  is the variate on the new scale. In the case of coercivity distributions, let 

 be a scaled magnetic field. The coercivity distribution  on the new scale is given 
by: 

( )y g x=
( )H g H∗ = ∗M

1
1 ( )

( ) ( ( ))
g H

H g H
H

− ∗
∗ ∗ − ∗

∗
∂

=
∂

M M  (3) 

Notice that  cannot be plotted just by changing the scale of the horizontal axis because of 
the normalization property (2). Of special interest for the following discussion is the particular 
case given by , whereby (3) becomes: 

∗M

logh = H
hM( ) ln10 10 (10 )hh∗ =M  (4) 

In the following, we designate with ( )f h  a PDF obtained from ( )f H  with . One could 
ask why a coercivity distribution should be calculated on different field scales. The reason for a 
scale change has profound roots in the mechanism that generates a PDF in nature. This mecha-

logh = H
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nism is so important for understanding coercivity distributions, that the subject is discussed in 
the following.  

The coercivity distribution of an assemblage of magnetic grains depends on: (1) the statistical 
distribution  of the microcoercivities  of the grains, (2) the coercivity distribution 

 of all grains with the same microcoercivity , and (3) the magnetostatic interactions 
between the grains. If magnetostatic interactions are negligible, the coercivity distribution of the 
grain assemblage is given by: 

K(HH )
)

KH

K)

KH

K( ,H Hµ KH

K K
0

( ) ( ) ( , )dH H H Hµ
∞

= ∫M H  (4) 

For uniaxial SD grains as well as for MD grains,  [K( , ) ( /H H H Hµ µ= Stoner and Wohlfarth, 
1948; Xu and Dunlop, 1995]. It is reasonable to assume that this relationship has a general validity.    
In that case, (4) becomes a simple convolution between  and  on a logarith-
mic scale: 

K(HH ) )K( ,H Hµ

K K( ) ( ) ( )dh h h hµ
∞

−∞
= −∫M H Kh  (5) 

H  is a PDF function that depends on the distribution of all physical (e.g. volume, shape, defects) 
and chemical (e.g. oxidation state) parameters that control . It is typically a broad distribution. 
The only relevant exception in nature is represented by magnetosomes, whose size, shape and 
composition is strictly controlled by bacteria. 

KH

µ  depends strongly on the domain state. In SD par-
ticles, µ  is a very narrow function with a peak at . MD particles are characte-
rized by a much broader µ  with a typical exponential shape that depends on the grain size and 
dislocation density [

Klog(0.5 )h = H

Xu and Dunlop, 1995]. 

Both H  and MDµ  (where the index MD indicates MD particles) depend on the statistical distri-
bution of physical and chemical processes that result form stochastic processes. For seek of sim-
plicity, we discuss the case of H . Consider an initial collection of identical grains, all characteri-
zed by the same . The magnetization curve of such grains is a step function, and the corre-
sponding PDF is given by , where δ  is the so-called Dircac δ-function (

KH

K(H Hδ − ) Fig. 8a). Ima-
gine now that the magnetic grains are subjected to an alteration process – such as oxidation or 
corrosion – that changes  over time. This change might consist of a systematic term that 
reflects the mean effect of the alteration process to , and a random or stochastic term. The 
latter depends on the heterogeneity of the alteration process, which might be more effective at 
some portions of space that are – for example – more exposed to a certain substance. The mean 
effect of the alteration process will be ignored in the following without loss of generality. A short 
time unit  after alteration began, the microcoercivity of the particles is given by: 

KH

KH

dt

K K( d ) ( ) ( )dH t t H t s H t+ = ± K

)

 (6) 

where  is a function that describes how the stochastic alteration process depends on . For 
example, we can assume that the relative change of  after a unit time is, let say, 10%. In that 
case, . Another choice could be that of a constant s , which is unrealistic because it 
produces negative values of . Since (6) describes a random process, we expect half of 

s KH

KH

K0.1s H=
K( dH t t+
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the grains to increase their microcoercivity, while the microcoercivity of the other half decreases. 
The coercivity distribution is now given by two peaks (Fig. 8b). The same alteration process is allo-
wed to go on for another time unit , whereby equation (6) is now applied to the two micro-
coercivites that resulted from the previous step. A coercivity distribution with four peaks is ob-
tained in this way (

dt

Fig. 8c). If the simulation of this stochastic process is allowed to proceed for a 
long time, a clear trend characterizes the resulting coercivity distribution (Fig. 8d). 

1 1 1

1 2

4 64

− +

= =

= =

δ δ

n n

n n

1

0

1/2

0

3/8

1/8

0

(a) (b)

(c) (d)

normalized microcoercivity normalized microcoercivity

p
ro

b
ab

ili
ty

p
ro

b
ab

ili
ty

 

Fig. 8. Stochastic model of a coercivity distribution (redrawn from R. Egli, Physics and Chemistry of the Earth, 29, 851-
867, 2004). (a) An initial set of identical particles has the same microcoercivity, . The probability of having 

 is obviously 1. (b) A random process changes the microcoercivity of the particles by a small amount  
over a given time. Now,   or  with equal probability. (c) The same random process affects 
the microcoercivity over the next time interval, whereby each microcoercivity value changes again by δ . Four micro-
coercivities values are obtained in this way. (d) The probability distribution of the microcoercivities after six time 
intervals, with . This distribution approaches fairly well the limit case of an infinite number of time 
intervals, which is given by a logarithmic Gaussian PDF. 

K 1H =

K 1H = K( )Hδ

K 1H δ= − K 1H δ= +

K( ) 0.1Hδ = KH

As the alteration process is going on, the coercivity distribution converges to a characteristic 
shape that depends only on s . PDFs obtained from a stochastic process as described above have 
an interesting property: when represented on an appropriate scale, they are self-similar. This 
means that if ( , )f x σ  is a self-similar PDF with width parameter , the convolution of two such 
PDFs gives again the same self-similar PDF: 

σ
1 2( , ) ( , )f x f xσ σ∗ =  1 2( , )f x σ σ+ . In other words, 

the sum of random variates described by a self-similar PDF is a variate with the same self-similar 
PDF. Such PDFs have very peculiar mathematical properties that make them so important in 
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statistics and in the description of stochastic processes. The most famous self-similar PDF is the 
Gaussian (or Normal) function: 

2

2
1 (

( , , ) exp
2 2

x
x

µ
µ σ

πσ σ

⎡ ⎤−⎢= −
⎢ ⎥⎣ ⎦

N ) ⎥  (7) 

with mean µ  and variance . This PDF can be generated by using (6) with a constant s  to 
describe a so-called additive stochastic process. The process defined by  (

2σ
Ks H∝ Fig. 8) is a multi-

plicative stochastic process that generates the logarithmic Gaussian (or Normal) PDF: 

2

2
1 ln (

( , , ) exp
2 2

x
x

x
µ

µ σ
πσ σ

⎡ ⎤
⎢= −
⎢ ⎥⎣ ⎦

N / )⎥

x x

 (8) 

with median  and dispersion parameter . The logarithmic Gaussian PDF itself is not self-
similar, but it is transformed into the self-similar Gaussian PDF through the scale transformation 

. Thus,  can be regarded as the natural scale of the logarithmic Gaussian 
distribution. This example can be generalized to the following statement: a stochastic process 
produces a PDF that is self-similar on an appropriate scale, hereon called the natural scale of that 
process. A wide and very general class of self-similar PDF is represented by the so-called Lévy 
stable PDFs [

µ σ

lnx∗ = lnx∗ =

Sato et al., 1999]. These functions are symmetric about their median . If we limit 
our considerations to this class of self-similar PDF we obtain a more useful statement: a stochastic 
process produces a PDF that is symmetric if represented on its natural scale. The representation of a 
coercivity distribution on its natural scale offers the advantage of a great simplification, since ad-
ditional parameters for the asymmetry of the PDF are not necessary. 

µ

The stochastic nature of coercivity distributions brings us to the concept of magnetic component. 
If we define a magnetic component as an assemblage of magnetic grains with a common origin 
and a common biogeochemical history, the coercivity distribution of such a component is the re-
sult of the stochastic nature of all processes that led to the formation of the magnetic grains (e.g. 
processes of nucleation and growth), and their subsequent chemical/physical alteration and se-
lection. According to this definition of a magnetic component and the above discussion about 
stochastic processes, the coercivity distribution of a magnetic component is represented by a sym-
metric, self-similar PDF on an appropriate field scale. We shall consider this statement as the funda-
mental hypotheses of component analysis, since it justifies the use of model functions for the 
coercivity distributions of each magnetic component. 

The above discussion shows that there is a well-defined relationship between the natural scale of 
a PDF and the stochastic process that generated it.  We recall the description of a stochastic pro-
cess given by (6). The general form of (6) deals with a variate  with PDF X f , whose change with 
time is given by: 

( d ) ( ) ( ) dX t t X t s X Z t+ = +  (9) 

where  is a variate described by a PDF ϕ . Equation (9) is called a stochastic process. If s  is 
independent of X , the PDF of  is given by the convolution of 

Z
( dX t t+ ) f  and ϕ . The reiteration 
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of (9) generates an infinitely divisible PDF as t . In the general case of s  depending on X  
we shall consider the variate transformation , whereby 

→ ∞
( )Y g Z=

( d ) [ ( ) ( ) d ] ( ) ( ) ( ) dY t t g X t s X Z t Y t g X s X Z t′+ = + ≈ +  (10) 

A self-similar PDF is obtained from (10) if  is independent of , whence: ( ) ( )g X s X′ X

( ) d / ( )g x x s x= ∫  (11) 

defines the natural scale of the stochastic process (9). Conversely, a PDF that is self-similar on a 
scale defined by  might result from a stochastic process with s x . ( )g x ( ) 1/ ( )g x′=

The hypothesis that coercivity distributions can be modeled with self-similar PDF on an appro-
priate field scale is difficult to confirm for natural magnetic components, since rocks and sedi-
ments are almost always mixtures of at least two components. Robertson and France [1984] first 
realized that the coercivity distribution of synthetic assemblages of magnetite and hematite 
particles can be modeled with logarithmic Gaussian functions. They implicitly introduced the 
logarithmic scale as a natural scale for coercivity distributions, and the Gaussian function as the 
self-similar PDF. Detailed measurements of sediments and rocks demonstrated that the coercivity 
distributions of natural magnetic components are slightly skewed on a logarithmic scale [Egli, 
2004]. Their natural scale has been tentatively approximated by , with  for SD 
magnetite and  for other natural magnetites. Since the observed natural scales are pe-
culiar to each component and are probably not universal, the logarithmic scale can be still con-
sidered as a fairly good scale for plotting coercivity distributions. Some cases that confirm the 
fundamental hypotheses of component analysis are shown in 

pH H∗ = 0.5p >
0.2p ≈

Fig. 9. 

The representation of a coercivity distribution on different field scale is a very effective tool for 
checking whether the distribution is strictly unimodal or it is the result of the overlapping of two 
or more magnetic components. Subtle details that are completely hidden in one field scale be-
come evident if a different scale is chosen. Egli [2003] discussed extensively the use of the power 
scale transformation defined by: 

pH H∗ =  (12) 

with the scaling exponent . For  the power scale transformation converges to the 
logarithmic transformation  . Thus, (12) provides a set of scales that contain the 
logarithmic and the linear scales as a special case. 

0p > 0p →
lnH ∗ = H

Fig. 10 shows an example where the the power 
scale transformation has been used to check the unimodality of a coercivity distribution. 
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Fig. 9. Validation of the stochastic model 
for the coercivity distribution of some na-
tural magnetic components. First, a field 
scale transformation  has been 
applied to the measured coercivity distribu-
tions (thick black lines) . The scaling expo-
nent  has been chosen so that the trans-
formed coercivity distribution is symmetric 
(e.g. its skewness is zero). The estimated 
measurements errors are given by the thick-
ness of the black line. The scaled coercivity 
distribution has been fitted with a Lévy self-
similar PDF  with width parame-
ter  and shape parameter  (red line). 
Special cases of  are the Gaussian 
PDF ( ), and the Cauchy PDF ( ). 
The parameter α  controls the squareness 
of : tip-shaped PDFs with heavy 
tails are obtained with .  (a) Coerci-
vity distribution obtained from the AF de-
magnetization of ARM for cells of the mag-
netotactic bacterium MV1 mixed with pure 
kaolin. Notice that a scale transformation 
was not required. The coercivity distribution 
is heavily tailed, as indicated by the low α . 
(b) Coercivity distribution obtained from 
the AF demagnetization of ARM for pedo-
genic magnetite in a soil developed from 
glacial till in Minnesota. The coercivity di-
stribution of the pedogenic component has 
been obtained by subtracting the contribu-
tion of the glacial till from the demagneti-
zation curve. (c) Coercivity distribution ob-
tained from the AF demagnetization of 
ARM for the clay fraction of a glacial till in 
Minnesota. Notice that the coercivity distri-
butions in (b) and (c) are plotted on dif-
ferent field scales, but are characterized by 
almost the same Lévy self-similar PDF with 
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Fig. 10. Example of the use of different field 
scales to check whether a coercivity distri-
bution is unimodal or is the result of two 
overlapped magnetic components. The 
sample was a filter used to collect particu-
late matter from the atmosphere of a rural 
area in Switzerland [Spassov et al., 2004]. 
Unlike other samples collected in polluted 
areas, this sample was expected to contain 
only one magnetic component carried by 
the natural dust. The coercivity distribution 
of this sample has been calculated with 
CODICA on (a) a linear scale, (b) a logarith-
mic scale, and (c) a field scale defined by 

. Notice that on this last scale 
the coercivity distribution is not perfectly 
unimodal, suggesting that the sample 
might contain a small contribution from far 
located anthropogenic pollution sources. 
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4. Install and run CODICA 5.0 

Requirements 

To run CODICA 5.0 you need Mathematica 5.0 and later versions installed on a Windows OS. At 
least 128 MB RAM and a 1 GHz CPU are recommanded. 

Install CODICA 5.0 

To install CODICA 5.0 copy the source code file  MAG_MIX_1/CODICA/Install/Codica.m  into 
the following directory: 
C:/.../Wolfram Research/Mathematica/5.0/AddOns/StandardPackages/Utilities 
whereby  C:/.../  depends on the installation of Mathematica on your computer. 

A short introduction to Mathematica (all what you need to know about) 

Mathematica is a software conceived to perform high-demanding logic, symbolic and numeric 
mathematic operations. It integrates a numeric and symbolic computational engine, graphics 
system, programming language, documentation system, and advanced connectivity to other 
applications. 

When you launch Mathematica, a so-called notebook is opened. This notebook is initially empty. 
A Mathematica notebook is simply a command shell to enter commands and see results. You can 
save and edit the notebook, and export graphics and other output results. Every Mathematica 
notebook contains input lines, numbered by In[#], where # is the input number, and output 
lines, numbered by Out[#], where # is the number of the corresponding input. Everything you 
type in a notebook is interpreted as a command line, and an input number is automatically 
assigned when you ask to run the command line. You can do so by pressing the keys Shift + Enter 
at the same time (Example 1). Enter alone is used to enter a new line. When you evaluate the first 
command of a notebook, the so-called Mathematica kernel is launched. The kernel is the core of 
Mathematica that performs all the calculations requested through the input lines. 

 

Example 1: A simple run with Mathematica. 

1. Launch Mathematica.exe 

 

 

 

 

2. An empty notebook appears 
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3. Type a command, for example “1+2” 

 
 
 

 
 
 
 
 

 

4. Press Shift + Enter to evaluate the command. Now, “1+2” is 
the first input, In[1], and the result “3” the first output Out[1]. 
 
 
 
 
 

 
 
5. After evaluating the first input, the Mathematica Kernel is 
started automatically. 

 

 
 

 

6. You can save the notebook by clicking on the Menu “File” 
and then “Save”. By double-clicking on the saved notebook 
you can launch Mathematica and load the notebook with all 
stores inputs and outputs automatically. 

 

 
 
 
 

 

7. If you try to evaluate a wrong expression, an error message 
appears. 
 

 

 

 

 

 
 

When you try to evaluate a wrong expression, an error message appears. Usually, the kernel is still 
running properly after encountering an error, however, in case of very complicated calculations, 
the kernel may stuck. In such cases, quit the kernel from the task list or by invoking the task 
manager. 

Load CODICA in a Mathematica session 

To work with CODICA you need to load the program from a Mathematica session. Open a new 
Mathematica notebook by clicking on the Mathematica icon. An empty window will appear. Type 
exactly the following string: <<Utilities`Codica`, whereby the symbol “ ` ” is the grave 
accent. If your keyboard does not provide this accent, open an example notebook provided with 
this manual. You find this string at the beginning of the notebook. Press the keys Shift and Enter 
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at the same time to upload CODICA. After CODICA is uploaded, a welcome message appears on 
the screen. To run CODICA, type Codica, followed by Shift + Enter. After this step, CODICA 
interacts with the user via promt windows. 
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5. CODICA 5.0 tutorial 

Introduction 

This tutorial is intended to provide you with a basic knowledge of CODICA. The functions of the 
program are illustrated step by step with an example based on real data. Each step is marked by a 
book symbol followed by a number: (e.g.  1). Click on the book symbol or other interactive 
topics to jump to the example at the end of this section. You also find this example in the file 
MAG-MIX_1/Codica/Examples/Example.nb provided with this manual. You can open this file 
and run the example by yourself to familiarize with CODICA. Change the input parameters to see 
how the results are affected. To run the example you need to copy the folder MAG-MIX_1/ 
Codica/Examples/data provided with this manual onto your computer. This folder contains 
the data used for the example. The leading example of this tutorial was chosen to activate all the 
options of CODICA. In a typical run with your data, you will encounter only some of these options. 

This tutorial provides you with all the important informations you need to run CODICA and un-
derstand the basic principles of the data processing. Details about how CODICA performs the 
data processing are provided in section 6. You do not need to read that section unless you are 
interested in the software development or in the mathematics behind the calculation of coer-
civity distributions. 

Structure of CODICA 

CODICA interacts with you through prompt windows. When a prompt window appears, you are 
asked to enter your answer in the prompt window. If a prompt window is open and you click on 
any part of the Mathematica notebook, the notebook may hide the prompt window. If you need 
to scroll through the notebook while the prompt window is open, shift the latter to one side, so 
that you can click on it when you are ready to enter your answer. 

While running, CODICA generates different types of outputs in the Mathematica notebook: (1) 
progress messages (black), (2) information messages (blue), (3) warning messages (red), (4) criti-
cal warning messages (bold, red), and (5) graphics. CODICA will stop after critical warning mes-
sages, because any further data process is impossible. Critical warning messages indicate that 
your data cannot be analyzed, probably because they do not represent a correctly measured 
magnetization curve. 

At the end of a CODICA session, useful results are saved into different files that can serve as input 
files for other programs of the MAG-MIX package. You can open these files with any other pro-
gram capable of reading numerical data, such as Excel, Gnuplot, Kaleidagraph or Origin. 

Exit CODICA 

You can exit CODICA before the program is finished by (1) typing abort in any prompt window 
produced by CODICA, or (2) quitting the Mathematica Kernel. These options are useful if CODICA 
is producing unexpected error messages or if you want to check the data file and restart again. 
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 1. Enter the path of the data file 

When you start CODICA, a prompt win-
dow asks you to enter the full path of 
the file that contains your data. Type 
exactly the complete path, with correct 
upper- and lower-cases and including 
the extension of the file (e.g. .txt or 
.dat). To avoid typing long paths it is 
recommended to store your data in a 
easily accessible folder (e.g C:/users 
/myself/datafile.dat). 

 
 

CODICA can read any file that contains at least two columns of numbers. Header and footer lines 
will be ignored. The first column is supposed to contain the field values, the second column the 
corresponding measurements. Eventual further columns to the right will be ignored. The colums 
must be separated by at least one of the following characters: space, tabulator, or the punctua-
tion signs “ , ” , “ : ” , “ ; ”. CODICA starts to read the file at the first row that has the appropriate for-
mat and stops when it encounters a row that has not the appropriate format (e.g. a footer line) or 
at the end of the file. Therefore, header lines must not begin with numbers in a column format. 

 If CODICA experiences problems in reading the file, remove the header. If CODICA does not 
find the file, or if the file format is wrong, a critical error message is displayed and the program is 
stopped. 

 2. Check the measurements 

CODICA checks the validity of the measurements. Valid measurements represent any kind of 
magnetization or demagnetization curves but not hysteresis loops. Ideally, the magnetization 
curve starts at a zero field, and the field increases (decreases) monotonically to a maximum (mini-
mum) value. Some automated measurement systems merge different sets of data (e.g. an IRM 
acquisition curve, followed by a DC demagnetization). CODICA selects all data that define the first 
magnetization curve encountered in the data file. If you want to analyze the successive 
magnetization curves, you have to save them in a separated file. The field increment steps of 
automated systems may be smaller than the error of the applied field: in such cases the fields are 
not strictly monotonic, but have nevertheless a monotonic trend. CODICA stops to read the data 
as soon as the increasing/decreasing trend of the applied field is inverted. Because of measu-
rement errors and other instrumental effects, initial values of the field may have the wrong sign 
(e.g. small negative fields instead of zero, if the nominal applied field is positive). CODICA skip 
these fields automatically. A magnetization curve must contain at least 9 measurements in order 
to be analyzed by CODICA, and at least 20 measurements are recommended. If the checking pro-
cedure fails, a critical error message is displayed and the program is stopped. Otherwise, the 
measured magnetization curve is plotted. 
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  Multiple measurements. Multiple measurements are sequences of measurements characteri-
zed by the same field. CODICA detects multiple measurements and calculates an average value. A 
warning message is displayed. You should ignore this message if the data file has been produced 
automatically by a measurement system. However, if the measurement steps were performed by 
hand, you should consider the possibility that some steps were remeasured and only the last 
value of a multiple measurement might by correct. In this case, you should exit CODICA and 
check the data file manually. 

  More than 300 measurements. Error-free magnetization curves are smooth. The amount of data 
produced by some automatic system does not increase the resolution of a magnetization curve: 
the highly redundant data are helpful only in reducing the effects of measurement errors. The 
least-squares collocation method used by CODICA to filter the data is very efficient in removing 
measurement errors; however, the amount of mathematical operations required is proportional 
to the square of the number of measurements. Accordingly, the computation time increases 
enormously for large dataset. If the dataset contains more than 300 measurements, CODICA uses 
a moving average filter to reduce the number of data. This procedure does not discard informa-
tion from the original file, and you should not be worried about the quality of the results. A war-
ning message remembers you that CODICA is dealing with a reduced amount of points. 

 3. Evaluate the properties of the magnetization curve 

Before analyzing the magnetization curve, CODICA evaluates its general properties, such as the 
initial and the final magnetization, the median field and the 75% quantiles. These parameters are 
necessary for further processing of the data. CODICA prints a summary of these properties. The 
information reported in this summary does not affect the final result of the program. 

  Digital rounding. Digital rounding effects occur when the digitalization of measurements by 
the acquisition software produces errors that are larger than the measurement error of the mag-
netometer. The resulting magnetization curve contains characteristic steps that are recognized 
by CODICA (Fig. 5). A warning message is displayed, together with a list of points where digital 
rounding has been detected. At places where steps have been identified, CODICA reorganizes 
the measurements in order to minimize the negative consequences of digital rounding. This is 
done by taking the arithmetic mean of the two measurements across a step produced by digital 
rounding, and by discarding all the other measurements between two or more such steps. By 
doing so, the maximum error introduced by rounding to the n -th digit is reduced from 10  to 
the half. In case of large amounts of data produced by an automatic measurement system, some 
small jumps in the magnetization curve can occur by chance. CODICA might confuse them with 
digital rounding effects, without negative consequences on the data processing. 

n−

 4. Search an optimal field scaling exponent 

As discussed in section 3, the magnetic field can be rescaled to obtain a symmetric coercivity 
distribution. This applies to a magnetization curve as well. As a first step in the data processing, 
CODICA looks for a scale transformation that gives the most symmetric magnetization curve. The 
scale transformation used by CODICA is a power transformation , where q  is a 
damping term and  is the scaling exponent (see 

( pH H q∗ = + )
p section 6.2 for more details). Usually, sym-
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metric magnetization curves are obtained with 0 . Accordingly, CODICA explores 
systematically exponents . This operation can take some time, depending on the number 
of data. If an optimal value is not obtained with , CODICA will try with . Since large 
values of  can produce numerical problems, the search is limited to . This 
range is adequate for all types of magnetization curves. However, it can seldomly occur that the 
search for an optimal value of  fails. In this case, CODICA will assume . The result of this 
optimization is an exponent  for best symmetry of the magnetization curve (see 

0.5p< <
1p <

1p < 1p >
p 0.01 2.7p≤ ≤

p 1p =
symp section 6.4). 

The performance of CODICA is influenced by the distribution of the field values. The ideal distri-
bution of field values produces equally spaced points when the magnetization curve is scaled for 
best symmetry. Typically, small steps are required at small fields, and large steps at large fields. 
However, the ideal choice of field values depend also on the error affecting the applied field. 
Generally, a precise control of the field coil become increasingly difficult at large fields. Accor-
dingly, more measurement are required at high fields to compensate for this effect. Many auto-
mated measurement system use a constant field increment which compensates for the larger 
error at high fields. If the distribution of field values becomes too irregular when plotted after the 
scale transformation defined by , large “holes” may result in the scaled magnetization curve. 
To avoid this situation, CODICA compares the scale transformation with the distribution of field 
values and finds a compromise between both. 

symp

The results of the operations described above is summarized in a table that reports the mean 
misfit between the scaled magnetization curve and a reference hyperbolic function used to eva-
luate the symmetry. The misfit is expressed as % of the amplitude of the magnetization curve for 
(1) the original field scale, (2) the scale for the most equally spaced fields, (3) the scale for the 
most symmetric curve, (4) the scale suggested by CODICA, which is a compromise between (2) 
and (3). 

CODICA uses the suggested field scale to fit the magnetization curve with an asymmetric hyper-
bolic function (see section 6.3 for more details). The shape of this function is controlled by 8 
parameters and is flexible enough to account for a variety of magnetization curves, including 
difficult cases given by mixtures of low- and high-coercivity minerals, such as magnetite and 
hematite. The best-fit curve is plotted together with the measurements. This fit is not the final 
model of the magnetization curve and you should not worry too much about discrepancies with 
the measured data. 

A prompt window asks you whehter 
the scale used is acceptable or not. The 
scale suggested by CODICA is almost al-
ways acceptable. If you are not an expe-
rienced user, you should accept this 
scale by typing the letter “y” for yes. 
More experienced users can choose a 
different scale by typing “n”. 
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  The choice of a field scale is not critical for the quality final results, so you should not worry 
too much about it. CODICA automatically avoids critical scale transformations, and accepting the 
suggested scale is seldomly a bad choice. 

 If you decide to enter the scaling exponent manually, you should read section 6.3 and feel 
confident with the mathematics behind. Avoid exponents >1 if possible. A manual choice of the 
scaling exponent can be taken into consideration in the following cases: (1) the scaling exponent 
suggested by CODICA is >1, (2) the plotted best-fit curve does not fit the measurements equally 
well at small and at large fields, (3) you want to see how the magnetization curve is affected by 
different values of the scaling exponent. 

  For illustrative purposes only, the scale suggested by CODICA in this example was rejected.  

 5. Entering a scaling exponent manually 

This step is necessary only if you wand to discard the field scale suggested by CODICA.  

A prompt window asks you to enter a 
positive scaling exponent in the range 
between 0.0001 and 5. You should con-
sider very carefully the reasons for ente-
ring exponents >1.5. The exponent you 
enter in this window is not definitive: 
you will have the possibility to reject it 
and make a different choice. 

 

 

 

 The performance of CODICA is not guaranteed for scaling exponents >2.7.  

  A criterion for choosing the scaling exponent is given by the difference between the measu-
rements and the best-fit curve. If this difference is highest at small fields, you should choose a 
smaller scaling exponent. On the other hand, if the difference is highest at large fields, you should 
choose a larger scaling exponent. 

CODICA will rescale the measurements according to the exponent you entered, and recalculate a 
best-fit with an asymmetric hyperbolic function. After the results are plotted, a prompt window 
will ask you to accept or reject the field scale. If you do not accept the field scale, a prompt 
window asks you for a new scaling exponent, until you accept a solution. 

  It is strongly recommended to either accept the scaling suggested by CODICA, or try several 
different scaling exponents. You can compare the results by looking the mean standard deviation 
of the fitted curve reported in the title of the plot. 
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 6. Calculate the residuals 

The functions used to fit the magnetization curve serves as a model to rescale the measurements 
in such a way, that the magnetization curves is transformed into a nearly straight line. This opera-
tion is called linearization of the magnetization curve. The linear trend is then subtracted from the 
linearized magnetization curve to obtain so-called residuals (see section 6.6 for the mathematical 
details of this operation). The residuals are just a kind of difference between the measurements 
and the model used by CODICA to fit them, plotted on a suitable scale. A typical residual curve 
contains several oscillations around a mean value of zero. These oscillations are the sum of (1) 
very detailed features of the magnetization curve – such as those arising from the overlapping of 
different magnetic components –, and (2) measurement errors. Measurement errors are highly 
amplified in the residual curve and can be recognized clearly. The scope of transforming the 
magnetization curve into the residual curve is that data processing on the latter is much more 
efficient. The residual curve is handled as a stochastic signal, which is characterized by a so-called 
autocorrelation distance. The autocorrelation distance is the typical range of fields over which the 
error-free residuals are oscillating around a mean value of zero. CODICA uses a least-squares col-
location method to model the error-free residual curve and make a first estimate of the measu-
rement errors (see sections 6.7 to 6.10 for the mathematical details). The error-free residual curve 
is characterized by the typical range of fields spanned by individual “wiggles” of the curve. 

The results obtained as described above are plotted in a graphics with (1) the residuals (dots), (2) 
the least-squares collocation model (black line), and (3) a first estimate of the measurement errors 
(gray area around the points).  

  The appearance of the estimated measurement errors in the plot depends strongly on your 
data. If you measured a sample whose magnetic properties are dominated by a single magnetic 
component, the magnetization curve fits well with the model function used by CODICA. In such 
case, a large contribution to the residuals comes from the measurement errors. Accordingly, the 
estimated measurement errors are larger than the amplitude of the residual curve. You should 
not be worried about this result: it does not mean that the quality of the measurements was low. 
On the other hand, some mixtures of different magnetic components fit less well with the model 
function used by CODICA. The contribution of the measurement errors to the residual curve is 
small, and the data are apparently “cleaner”. 

  The error estimation produced by CODICA at this point is not definitive, and you might find it 
incorrect. You should not worry about, since the definitive error estimation is performed in a later 
stage of the data processing. This error estimation is intended to give you an idea about the 
significance of the residuals. As a general role-of-thumb, the reliability of the error estimation is 
proportional to the number of measurements. Since the modeled residual curve depends on the 
error estimate, it might also be incorrect at this stage of the data processing. 

 7. Remove outliers 

The magnetization curve might contain some odd measurements produced for example by inter-
ferences with other devices in the laboratory, or by spikes in the electrical power supply. Often, 
these odd measurements are barely visible in a standard plot of the magnetization curve, but 
become very evident when the residuals are plotted. These odd measurements are recognized by 
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CODICA as outliers, when they fall apart the overall trend of the residuals by more than three 
times the estimated measurement error. 

Outliers are marked as red points in the 
plot of the residuals. If some outliers 
have been detected, a prompt window 
will ask you if you want to remove those 
points from further data processing. 

 

 

 

 

 

  The human brain has a unmatched visualizing and pattern recognition ability. Therefore, you 
will recognize outliers much easier and reliably than CODICA can. If you think that the points 
marked by CODICA as outliers are normal measurements, you can choose to keep these points 
for further data processing. 

  If you accept to remove the outliers, CODICA will repeat all the previous data processing steps 
without these points. It is strongly recommended to remove outliers for better final results. Out-
lyers may bias many estimated parameters used by CODICA during the data processing. 

  After removing outliers, it is possible that a second run through the data reveals other “minor” 
outliers. You can repeat the process of removing outliers until you are satisfied with the result. 

 The case where the first and/or the last point are considered as outliers needs special atten-
tion. Often, these points are not really outliers: they rather reflect some particular processes oc-
curring at the beginning or at the end of the magnetization curve. The initial part of a demag-
netization curve is possibly affected by viscosity effects. On the other hand, the last step of a de-
magnetization curve is probably performed after treating the sample with the same magnetic 
field as the field used to impart the magnetization. Thermal activation effects might be responsi-
ble for a mismatch between the “effectiveness” of the magnetic field during acquisition and later 
demagnetization. For example, if a 200 mT field was used to impart an IRM, your sample might be 
completely AF demagnetized already at 180 mT. In this case, the magnetization curve becomes 
suddenly “flat” near the last measurement point. The first and the last point of a magnetization 
curve can therefore represent an “anomalous” trend or be real outliers. 

 8. Filter the residuals 

At this point, CODICA has calculated a model for the residuals and the measurement errors. As 
already mentioned, the human brain has a unmatched ability in visualizing and recognize pat-
terns. The measurement errors are highly enhanced in the residual curve, and your eyes are in-
stinctively able to “see” them. By doing so, you have the ability to “tune” the CODICA model of 
the residuals. If CODICA underestimated the measurement errors, you will find that the modeled 
residual curve follows too closely the measurement points and has an excessively irregular ap-



CODICA 5.0 reference manual  36 

pearance. On the other hand, if CODICA overestimated the measurement errors, the modeled 
residual curve is too smooth and important details of the residual curve are lost. 

You can choose the degree of “smooth-
ness” of the residuals model curve with 
a parameter called correlation length, 
that you are asked to enter by a prompt 
window.  

 

 

 

 

 

The correlation length is used by the least-squares collocation model as a parameter that indica-
tes the scale of the smallest details in the residual curve. Filtering the residuals with a correlation 
length  means that features with an extension  are filtered out. The larger is , the smoo-
ther will appear the filtered residual curve (see 

0r 0r< 0r
section 6.11 for mathematical details). 

After entering the correlation length, CODICA will calculate the corresponding least-squares col-
location model, and a graphics with the new estimate of the residual curve and the measurement 
errors will be displayed.  

A prompt window will ask you if you 
want to accept the displayed model. 
Type “y” if you are satisfied with it, or 
“n” if you want to enter a different value 
for the correlation length. 

 

 

 

 

 

  You can try as many models with different correlation lengths as you want, until you are 
satisfied with the result. 

  If you should choose  so, that the modeled residual curve follows the general trend shown 
by the residuals without being affected by the errors. To help you in your choice, CODICA propo-
ses a starting value from its own estimate of the residual curve. This is generally a good starting 
point. 

0r

  There is a range for the possible values of  you can choose. The lower limit is given by the 
maximum distance between two consecutive residuals, the higher limit by the range of fields 
spanned by the measurements. If you choose values close to the lower limit, the filtered residuals 

0r
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will be very close to the measurements and will probably be affected by “wiggles” produced by 
the measurement errors. On the other hand, choosing values close to the upper limit gives you a 
straight line close to zero. You might choose this latter option if you have the impression that the 
residuals are completely “noisy”. 

  It is recommended for new users to play with by choosing different values in the entire per-
mitted range. You will soon get a “feeling” of how least-squares collocation filtering works. It is 
also recommended to run CODICA to the end with different values of  to see the difference 
between the results obtained. 

Lr

0r

 A dangerous temptation for many users is to choose too small values of  to keep all “infor-
mation” contained in the data. You should remember that (1) magnetization curves are naturally 
smooth and do not change much over a few mT range (except if you are measuring special mate-
rials such as thin films), and (2) short-range oscillations, such as “wiggles”, are produced by mea-
surement errors that do not have a completely random appearance ( so-called “pink” noise). 

0r

  Ideal, “white” noise is completely uncorrelated and is easily recognized and removed. How-
ever, measurement errors can be correlated, for example if they arise from fluctuations of the 
ambient field during measurements. In this case the measurement errors have their own correla-
tion length. Least squares collocation can remove measurement errors efficiently if the correla-
tion length of the noise is much smaller than the correlation length of the residuals.  

 9. Calculate the filtered measurement curve 

Once you accepted a model for the residuals, CODICA is ready to calculate the filtered, sup-
posedly error-free magnetization curve. To do so, all previous steps are inverted, starting from the 
filtered residuals, in order to obtain again a magnetization curve (see section 6.12 for mathema-
tical details). The magnetization curve is plotted together with the original measurements. The 
estimated error of the modeled magnetization curve is plotted as well. 

  If the quality of the measurement was good, you probably will not notice any difference be-
tween the raw measurements and the magnetization curve calculated by CODICA. However, the 
differences become evident if you compare a numerical derivative of the magnetization curve 
obtained using the raw data on one hand, and the magnetization curve calculated by CODICA on 
the other. 

 The estimated error of the modeled magnetization curve is typically small and peaks at the 
median field, where the slope of the magnetization curve is highest. To understand this result, 
keep in mind that measurement errors do not arise only from the magnetometer, but also from 
applied field. Errors in the applied field are more visible at places where the magnetization curve 
has a large slope. 

 10. Calculate the coercivity distribution 

The coercivity distribution is calculated in a similar way as the magnetization curve, starting from 
the first derivative of the modeled residual curve and inverting all th steps used to transform the 
magnetization curve into the residuals (see section 6.13 for mathematical details). You have 
several options for calculating the corcivity distribution on different scales and for choosing the 
appropriate range of fields covered by the coercivity distribution. 
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 11. Coercivity distribution on a log scale 

Because of the particular importance of the logarithmic field scale, CODICA will first display the 
coercivity distribution on this scale over the entire range of fields spanned by the measurements. 

A prompt window will ask you to cho-
ose a range of fields over which CODI-
CA should recalculate the coercivity di-
stribution on a large number of points. 
You can choose the entire range of 
fields spanned by the measurements 
(type “a”). In some cases the coercivity 
distribution is significantly different 
from zero on a smaller range. You can 
choose this range by typing “s”. You can 
also specify a different range by typing 
its limits.  

  If you enter the field range of the coercivity distribution manually, keep in mind that you can 
only chose a range that is covered by measurements. CODICA does not allow extrapolations 
outside this range. 

A second prompt window will ask you 
to enter the number of points where 
CODICA should calculate the coercivity 
distribution. These points will be equal-
ly spaced within the range you chose 
previously. CODICA suggests you to use 
a number of points that is at least as 
large as the number of measurement. 
However, you are free to enter any 
number of points you desire. 

 

 

After entering the field range and the number of points, CODICA will recalculate and plot the 
coercivity distribution on the field range you chose. The thickness of the curve (small errors), or 
the grey region around it (large errors), indicates the estimated 95% confidence interval of the 
coercivity distribution. The error estimate is also plotted below the coercivity distribution. 

 You can choose to recalculate the coercivity distribution on a different range of fields. 
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A prompt window will ask you if you 
want to choose a different range of 
fields. Type “n” if you are satisfieed with 
the result. If you type “y”, CODICA will 
ask you to enter a new range of fields. 
Then, it will recalculate and the 
coercivity distribution on the new ran-
ge. This process is repeated until you 
type “n” in the prompt window to the 
right. 

  

 

 12. Coercivity distribution on a linear scale 

It is sometimes useful to plot the coercivity distribution on a linear scale. A linear scale will show 
different features of the coercivity distribution that may be hidden in the logarithmic scale repre-
sentation (see Fig. 10). 

A prompt window will ask you if you 
want to calculate the coercivity distri-
bution on a linear scale. Type “y” if you 
are interested in this option. 

 

 

 

 

 

 

If you accepted to calculate the coercivity distribution on a linear scale, CODICA will first display 
the coercivity distribution on this scale over the entire range of fields spanned by the measu-
rements. 

  The behavior of some coercivity distributions at  might be discontinuous. This is for 
example the case of an exponential distribution. In such cases, the coercivity distribution calcula-
ted by CODICA might show a large peak at . This peak is an artifact produced by a field 
scale change. You can remove this peak by choosing to calculate the coercivity distribution on a 
range of fields that does not include . This problem is avoided if the magnetization curve 
is defined by enough points at . 

0H →

0H =

0H =
0H →

At this points, you have the same options as in  11 for choosing the range of fields and the 
number of points of the coercivity distribution, and the coercivity distribution is plotted on the 
desired range. 
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 13. Coercivity distribution on a power scale 

It is sometimes useful to plot the coercivity distribution on a field scale that is intermediate 
between a logarithmic and a linear scale. The scale transformation defined by , hereon 
called the 

pH H∗ =
power scale transformation, is a suitable scale for this purpose. The exponent p  is a 

positive number. Special cases are , whose limit is the logarithmic scale, and , which 
is the linear scale. 

0p → 1p =

 A power scale will show different features of the coercivity distribution that may be hidden in the 
logarithmic and the linear scale representation (see Fig. 10). It is recommended to use a power 
scale to check if a coercivity distribution is unimodal.  

A prompt window will ask you if you 
want to calculate the coercivity distri-
bution on a power scale. Type “y” if you 
are interested in this option. 

 

 

 

 

 

 

 

Another prompt window will ask you to 
enter the exponent p  of the power 
scale transformation. You can enter any 
positive number. Numbers close to zero 
will give results that are similar to those 
on a logarithmic scale. 

 

 

 
 

 

 

  The behavior of some coercivity distributions at  might be discontinuous for power 
scales with . This is for example the case of an exponential distribution. In such cases, the 
coercivity distribution calculated by CODICA might show a large peak at , especially if 

. This peak is an artifact of changing the field scale used by CODICA into a power scale. You 
can remove this peak by choosing to calculate the coercivity distribution on a range of fields that 
does not include . The use of  is not recommended. 

0H →
1p ≥

0H =
1p >

0H = 1.5p >

After you entered a value for , CODICA will first p display the coercivity distribution on this scale 
over the entire range of fields spanned by the measurements. 
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At this points, you have the same options as in  11 for choosing the range of fields and the 
number of points of the coercivity distribution to be plotted on a power scale. 

 You have the possibility to try different values of . Answer “n” to the prompt window asking 
you to choose a different range of fields. Thereafter, CODICA re-asks you if you want to plot the 
coercivity distribution on a power scale. Anwer “y”, and enter a new power exponent in the next 
prompt window. 

p

 14. Saving the results 

After plotting the coercivity distribution on al field scales and ranges you wanted, CODICA is 
ready to save the results.  

A prompt window will ask you to enter 
a name for the files where you want to 
save the data. This name will be used to 
write different files which are distingui-
shed by their extension. If you do not 
want to save the data, type “exit” to exit 
CODICA. All files produced by CODICA 
are saved in the same directory where 
the original data file is located. 

 

 

 

CODICA will save the filtered magnetization curve in a file with extension “.cum” (for cumulative 
distribution, which is the integral of the coercivity distribution). The coercivity distribution on a 
logarithmic scale is saved in a file with extension “.slog” (“s” for spectra, “log” for logarithm). 

If you chose to calculate the coercivity distribution on a linear scale or a power scale, files with 
extensions “.slin” (“s” for spectra, “lin” for linear), and/or “.spow” (“s” for spectra, “pow” for 
power) will be created as well. 

 CODICA saves always the last coercivity distribution calculated on a particular scale. If you 
want to save the results of a CODICA session, be sure that the last coercivity distribution you 
asked CODICA to calculate on a given scale is the distribution you want to save. 

 You can save the coercivity distributions plots produced by CODICA by clicking on the 
corresponding graphics in the Mathematica notebook. The selected plot will be surrounded by a 
selection rectangle. On the top menu bar of Mathematica, select:  Edit → Save Selection As 
→ Format, whereby Format is a graphics format. Full-quality images are obtained using the EPS 
format.  
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A program example 

Notice: Numbers to the left refer to sections in the text with the corresponding explanation. Click 
on the link text on the left to return to the corresponding section of the manual. 

text <<Utilities`Codica` 

 CODICA v.5.0 for Mathematica 5.0 and later versions.  
 Distributed with the package MAG-MIX release 1, 04/04/2005.  
 Copyright 2005 by Ramon Egli. All rights reserved. 

text Codica 

 1 C:/MAG-MIX/Codica/Examples/tape.dat 

 2 Check the measurements... 
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 3 Evaluate the properties of the measured curve... 

 3 WARNING! CODICA detected possible digital truncation effects. 
 List of points where jumps arising from digital truncation have been identified: 

 point # field detected jump 
 6 2.5 0.01 
 12 5.5 0.01 
 20 9.5 0.01 
 23 12.5 0.01 

 Some points have been discarded/resampled in order to minimize digital 
 truncation effects. 

 3 Estimated initial magnetization: 5.126 ± 0.010 
 Estimated final magnetization: 0.004773 ± 0.0033 (extrapolated) 
 Estimated median field: 40.03 

 4 Searching for an optimized field scale. 

 Scan scaling exponents < 1. Please wait... 

 Scan scaling exponents > 1. Please wait... 

 4 Field scale Transformation Mean sd of fit 
 original: H’ = H 1.01% 
 for equally spaced points: H’ = H^0.849 1.04% 
 for the most symmetric curve: H’ = (H+1.37)^2.28 0.547% 
 suggested scale: H’ = (H+1.37)^1.34 0.899% 
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 4 Searching for an asymmetric best-fit hyperbolic model. Please wait... 

 Estimated contribution of a high-coercivity component: 2.58e-13 % 

 

0 100 200 300 400

scaled magnetic field

0

1

2

3

4

5

m
a
g
n
e
t
i
z
a
t
i
o
n
,
 
1
e
0

HYPERBOLIC MODEL (red). Mean sd: 0.120% 4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 5 Manually chosen field scaling exponent: 1.00 

 Searching for an asymmetric best-fit hyperbolic model. Please wait... 

 Estimated contribution of a high-coercivity component: 2.58e-13 % 
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 6 Search a scale for the magnetization. Please wait... 

    Iteration #1... 

    Iteration #2... 

    Iteration #3... 

 Estimate the measurement errors. Please wait... 

 Calculate the residuals. 

 Subtract the residuals trend with a 2nd order polynomial. 

 Estimate the autocorrelation function of the residuals. Please wait... 

 WARNING! The residuals are almost random. 

 6 Estimated lower limit of the autocorrelation distance: 17.6 

 6 Fit the residuals with an autocorrelation model. 

 WARNING! CODICA detected some outlyers. 
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 6
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 7 Outlyers will be removed and the cleaned measurements will be analyzed again. 
 

 7 [The repeated steps are not shown here…] 
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 8 Filter the residual curve using least-squares collocation with 
 correlation length: 12.7 

 Estimate the measurement errors... 
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 8 
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 8 Filter the residual curve using least-squares collocation with 
 correlation length: 20.0 

 Estimate the measurement errors... 
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 9 Calculate the fitted demagnetization curve... 
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 10 Calculate the coercivity distribution. Please wait... 
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 Range of fields spanned by the coercivity distribution: 23.0 – 53.6 

 The coercivity distribution is significant over the entire range of fields. 
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 11 Resample the coercivity distribution in the field range 23.0 -53.6 ... 

 The grey band around the curve in the following plot corresponds to the estimated 
 error (2 sd) 
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 11 Resample the coercivity distribution in the field range 26.0 – 54.0 ... 

 The grey band around the curve in the following plot corresponds to the estimated 
 
 

error (2 sd) 
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 12 
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 Range of fields spanned by the coercivity distribution: 0 – 52.6 

 12 Resample the coercivity distribution in the field range 20.0 -53.0 ... 

 The grey band around the curve in the following plot corresponds to the estimated 
 error (2 sd) 
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 13 
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 Range of fields spanned by the the coercivity distribution: 1.47 – 51.6 

 13 Resample the coercivity distribution in the field range 18.0 -50.0 ... 

 The grey band around the curve in the following plot corresponds to the estimated 
 error (2 sd) 
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 14 Save the fitted measurements in file: tape.cum 

  1. column: magnetic field, 
  2. column: magnetization, 
  3. column: absolute fit error. 

 Save the log-scaled coercivity distribution in file: tape.slog 
  1. column: log(magnetic field), 
  2. column: coercivity distribution (unit: magnetization), 
  3. column: relative error. 

 Save the linear scaled coercivity distribution in file: tape.slin 
  1. column: magnetic field, 
  2. column: coercivity distribution (unit: magnetization/field), 
  3. column: relative error. 

 Save the linear scaled coercivity distribution in file: tape.spow 
  1. column: (magnetic field)^2.28, 
  2. column: coercivity distribution (unit: magnetization/field^2.28), 
  3. column: relative error. 

 Thank you for using CODICA. Are you satisfied? 
 Please report eventual problems or suggestions to the author! 
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6. Technical reference 

6.1. Weighted fit 

Since the measurement points are not necessarily equally spaced, an unweighted fit would be 
biased by the parts of the magnetization curve where the points are closely spaced. To avoid this 
bias, all data fits performed by CODICA are weighted to avoid this effect. In a least-squares fit, the 
function: 

22 ( , )k k k j
k

w y f x aε ⎡= −⎣∑ ⎤⎦  (1) 

is minimized with respect to the parameters ja , whereby ( ,  are the points to be fitted, 

, 

)k kx y

1k N= … ( , )jf x a  is the parameterized fitting function and: 

1 1

1

2 1 1
1

1 1

, 2
2( )

,

k k
k

N

N N
N

N N

x x
w k

x x
x x x x

w w
x x x x

+ −

−

−
= ≤

−
−

= =
− −

1N≤ −

−

pq

q−

 (2) 

are the fitting weights. 

6.2. Scaling the magnetic field 

The magnetic field is scaled according to the transformation: 

1( ) ( ) ( )p
k k kH H H q H∗ = = + − +P  (3) 

where  is the scaling exponent, and 0p >

[ ]

2 1

1 2 1 1

/5 , if 0

min , /5 , if 0

H H
q

H H H H

⎧ =⎪⎪= ⎨⎪ − >⎪⎩
 (4) 

is a damping coefficient that avoids divergence at . The inverse transformation is given by: 0x =

1/1
1( ) [ ( ) ]

pp
k k kH H H H q− ∗ ∗= = + +P  (5) 

6.3. Model function for the magnetization curve 

The magnetization curve  is modeled with the sum of two empirical functions  and 
. The function 

( )M H ( )S H
( )U H

6
1

3 5 2
5

1 1
( ) tanh arsinh ( )

2 2

a
a

S H a a H a a
a

+⎧ ⎡ ⎛ ⎞⎤⎫⎪ ⎪⎪ ⎪⎟⎜⎢ ⎥= − − +⎟⎨ ⎬⎜ ⎟⎟⎜⎢ ⎥⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎣ ⎦⎭
4  (6) 

accounts for the sigmoidal shape of . The symbol 1  means that CODICA uses the ma-
chine number  that is closest to 1, to avoid numerical instability problems.  The parameters 

 and  control the two horizontal asymptotes: 

( )M H +

1>
3a 4a
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3 1lim ( ) (1 sgn )/2
H

S H a a a
→±∞

= ∓ 4+  (7) 

The position of the median field is controlled by the parameter , and the “width” of  by 
. The sign of  decides whether  is a monotonically increasing or decreasing curve. The 

parameter  influences the “tails” of : if  the horizontal asymptotes are 
approached very slowly, on the other hand, if  the asymptotes are approached like a 

 function. The parameter  controls the asymmetry of :  is 
symmetric about  if . A left-skewed  is obtained with , and a 
right-skewed  is characterized by . The effect of the different parameters on  is 
illustrated in 

2a ( )S H

1a 1a ( )S H

5 0a > ( )S H 5 0a →
5a → ∞

tanh 6 0a > ( )S H 0( ) ( )S H S H=
2H a= 6 1a = ( )S H 60 1a< <

( )S H 6 1a > ( )S H
Fig. 11. 

−2 0 2 4

0−3 3

1

0

0 5−5

1

0

1

0

a

a

a

a
a

a a
a

2

3

4

1

1

5 6

6

1
2

1

= −

= −

→ ∞ =

→ ∞a5 0 5= .

(a) (b)

(c) (d)

 
Fig. 11. Examples of the function . (a) The parameters ,  and  control the center, the ampli-
tude and the left asymptote of S , respectively. (b) The slope of the central part depends on . (c) The way how the 
asymptotes are approached is controlled by . (d) The parameter  controls the symmetry of S . The symmetric 
case is given by ; a  gives a right-skewed S , while a left-skewed  is obtained with . 

1( , , , )S x a a… 6

>

2a 3a 4a
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6 1a = 6 1 S 60 1a< <

 

The function 

( )[ ]7 1 2 8 2
8

1
( ) sgn ( ) ln cosh ( ) ln2/U H a a H a a H a a

a

⎧ ⎫⎪ ⎪⎪ ⎪= − + − +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
8  (8) 

accounts for an eventual highly unsaturated high-coercivity component.  has the following 
two asymptotes: 

( )U H
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  (9) 
7 1

lim ( ) 0

lim ( ) 2 sgn ( )
H

H

U H

U H a a H a
→−∞

→+∞

=

= − 2

1a

The parameter  is the field at which the two asymptotes of  intersect,  is proportional 
to the slope of , and  controls the interval over which  changes from a 
constant value of 0 to a line with slope . The effect of the different parameters on 

 is illustrated in 

2a ( )U H 7a

2( )U H a 8a ( )U H

72 sgna
( )U H Fig. 12. 

 

−2 0 2

2

4

−2 0 2

2

4

0 0

a
a

a
8

7
5

0 5
=

= .

a

8

7

1

1

=

=(a) (b)

 
Fig. 12. Examples of the function . (a) The parameter  controls the slope of the right asymptote. 
(b) The interval within which U  changes its slope is controlled by . 

1 2 7 8( , , , , )U x a a a a 7a

8a

 

6.4 Searching the best scale for symmetry 

The symmetry of a magnetization curve  is evaluated by fitting  with the sum of the 
symmetric sigmoid  and . The scale H  for which: 

( )M H ( )M H

0( )S H ( )U H ∗

[ ]1/2
0( ) ( ) ( ) 0k k kk

k

w M H S H U H∗ ∗ ∗− −∑ =

8

 (10) 

with the parameters  chosen to obtain 1a a…

[ ]20( ) ( ) ( ) mink k k k
k

w M H S H U H∗ ∗ ∗− − =∑ !

8

 (11) 

is defined as the most symmetric scale of . CODICA evaluates (10) systematically for all 
power scales defined in 6.2 with . If CODICA does not find a solution of (10) 
within this range of p , it just minimizes (11) with respect to  and to H . 

( )M H
0.01 2.72p< <

1a a… ∗

6.5. Model the magnetization curve 

After an appropriate scale  has been chosen, CODICA models the magnetization curve with 
the two functions  and  by minimizing 

H ∗

( )S H ( )U H

[ ]2( ) ( ) ( )k k k k
k

w M H S H U H∗ ∗ ∗− −∑  (12) 
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with respect to the parameters . The eventual contribution of a strongly unsaturated 
high-coercivity component is subtracted from the magnetization curve to obtain the “nearly 
saturated” curve: 

1a a… 8

) )
∗

) )
)

)

∗−

( ) ( ) ( )M H M H U H∗ = −  (13) 
 

6.6. Calculate the residuals 

The residuals are obtained by rescaling the magnetization axis. In the ideal case, the magnetiza-
tion curve   is identical to the model function . If the magnetization is rescaled 
using the inverse  of S , the rescaled curve is given by , 
which is the identity function. If the model function  is close enough to , the 
rescaled magnetization curve  is close to a straight line. The residuals curve 

 is thus defined as: 

(M H∗ ∗ (S H ∗

1S− 1 1( ( )) ( ( ))S M H S S H H− ∗ ∗ − ∗≈ =
(S H ∗ (M H∗ ∗

1( ( )S M H− ∗ ∗

(R H ∗

1( ) ( ( ))R H S M H H∗ − ∗ ∗=  (14) 

with: 
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a a a

− +
⎡ ⎛ ⎞⎤⎛ ⎞− ⎟⎜⎢ ⎥⎟⎜ ⎟⎜= − ⎟ ⎟⎜⎜⎢ ⎥⎟ ⎟⎟⎜⎜ ⎝ ⎠ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
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∗

)

e ω

ω

 (15) 

CODICA calculates the smallest possible residuals by minimizing 

2( )k k
k

w R H ∗∑  (16) 

with respect to the parameters . 1 6a a…

6.7. A stochastic model of the residuals 

The residuals are the superposition of (1) a curve that represents the deviation of the model func-
tion  from the measured curve, and (2) a random signal  that depends on the mea-
surement errors. The properties of the residual curve are evaluated by calculating the autocova-
riance function: 

(S H ∗ (e H ∗

( ) ( ) ( )dRC h R H R H h H
∞ ∗ ∗

−∞
= +∫  (17) 

Since  is a collection of discrete, unevenly spaced points,  is calculate indirectly 
through the Fourier transform R  of R : 

(R H ∗ ( )RC h
F

1( ) ( ) d ( ) ( ) ki H i H
N k k

k

R R H e H H H w R Hωω
∗ ∗∞ ∗ ∗ ∗ ∗ ∗

−∞
= ≈ − ∑∫F  (18) 

whereby: 

2( ) | ( )| cos( )dRC h R hω ω
∞

−∞
= ∫ F  (19) 
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A first, simple estimate of  is obtained by assuming that  is an uncorrelated random 
signal. In this case, , where  is the variance of  and  is the 
Dirac δ -function. Under this assumption the variance of  is given by: 

(e H ∗) )
)

)

)
)

)
)

]∗

ˆ∗

(e H ∗

( ) var[ ] ( )eC h e hδ= var[ ]e (e H ∗ ( )hδ
(e H ∗

var[ ] (0) ( )R Re C C h= − ∆  (20) 

whereby  is chosen to be the mean distance between the points in . The first estimate 
of  is then . 

h∆ (R H ∗

(e H ∗ 2( ) var[ ]e H e∗ =

6.8. Subtract a trend with polynomials 

The residual curve contains generally a trend that can be removed by subtracting the ( -th 
order polynomial  which minimizes: 

1n +
1(nP H ∗

+

[ 2
1( ) ( )k k n k

k

w R H P H∗
+−∑  (21) 

CODICA chooses n  to be the number of significant local minima and maxima  of the 
residual curve. A local minimum or maximum  is considered significant if and only if: 

1
ˆ , , nH H∗ …

ˆ
kH ∗

1
1 1

ˆ ˆ ˆ( ) ( ) max ( )k k
k j k

R H R H e H∗ ∗
±

− ≤ ≤ +
⎡− > ⎣ j

∗ ⎤
⎦  (22) 

This means that the difference between two successive significant local extrema must be larger 
than the estimated error (Fig. 13). 
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Fig. 13. Example of a residual curve (solid line) with three local maxima/minima. The error is represented by the grey 

band around the residual curve. In (a) the central local maximum is significant, because the difference with the 

neighbor minima is larger than the error. The opposite is true in (b). 

The “trend free” residuals: 

1( ) ( ) (nr H R H P H∗ ∗
+= − )∗  (23) 
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are the superposition of (1) a more or less sinusoidal curve  that represents the deviation 
of the model function  from the measured curve, and (2) a random signal  that 
depends on the measurement errors: 

(d H ∗)
)

)∗

)

)

( )S H (e H ∗

( ) ( ) (r H d H e H∗ ∗= +  (24) 

6.9. Rescale the residuals 

The “noise free” residual curve  is supposedly more or less sinusoidal. Accordingly, its 
Fourier spectrum  peaks at a dominant frequency , whereby   is the typical 
“wavelength” of the wiggles of . CODICA applies an additional field scale transformation: 

(d H ∗

( )d ωF
0ω 02 /π ω

(d H ∗

1

2

( ) ( ) ( )

/5

p p
k k kH H H q H q

q H
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∗

= = + − +

=

P
 (25) 

by choosing an exponent p  that maximizes the peak of the Fourier transform  of . 
The new scale makes  more similar to a sinusoidal function as possible (

( )r ωF ( )r H ∗∗

(d H ∗∗) Fig. 14). 
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Fig. 14. Example of how CODICA rescales the residual curve to approach the sinusoidal curve. (a) Original residual 
curve  and (b) its power Fourier spectrum | ( . Notice how the “wavelength” of  changes with 

. (c) A scale transformation   makes the residual more similar to a sinusoidal curve. (d) The 
corresponding Fourier spectrum shows a higher and more localized peak at the dominant frequency. 

(r H ∗) ))|r H ∗F (r H ∗

H ∗ 2( )H H∗∗ ∗=

 

 



CODICA 5.0 reference manual  57 

6.10. A least-squares collocation model for the residuals 

Least-squares collocation is used to interpolate a measured signal whose autocovariance 
function is known. Hence, the first step of least-squares collocation consists in modeling the 
autocovariance function of  . Since  is almost sinusoidal, and 

 is a stochastic signal, CODICA models the corresponding autocovariance functions with: 
( ) ( ) (r H d H e H∗∗ ∗∗ ∗∗= + ) )

)

d

e

ω

]

r<

r )
)

(d H ∗∗

(e H ∗∗

2 2
0

2 2
0

( ) exp[ ( / ) ]cos( )

( ) exp[ ( / ) ]

d d

e e

C h d h r h

C h e h r

ω= −

= −
 (26) 

where  and  are the variances of d  and e , respectively;  and  are 
the so-called correlation distances of d  and e , respectively; and 2 /  is the dominant wave-
length of d . Assuming that d  and e  are uncorrelated: 

2
0 var[ ]d d= 2

0 var[ ]e = dr er

dπ ω

( ) ( ) ( )r d eC h C h C h≈ +  (27) 

On the other hand, according to (19): 

2( ) | ( )| cos( )drC h r hω ω
∞

−∞
= ∫ F  (28) 

To find a best-fit correlation model of , CODICA minimizes the squared difference between 
(27) and (28): 

( )rC h

[
max min 2

0
( ) ( ) ( ) d

H H

d e rC h C h C h h
∗∗ ∗∗−

+ −∫  (29) 

with respect to the parameters , , ,  and . The correlation distance  of the residuals 
is assumed to be the value of h  for which  is reduced to the half: . If 
either  or r , CODICA consider the residuals to be dominated by a noise signal 
produced by the measurement errors. In this case, the estimate of  using (26) is not relia-
ble, and is replaced by: 

0d 0e dr er dω 0r
( )dC h 0( ) 0.5 (0)d dC r C=

0 00.8e d> d e
( )dC h

2 2
0 0( ) exp[ ( / ) ]dC h d h r= −  (29) 

whereby . 0( ) 0.5 (0)r rC r C=

If  is known, a more accurate estimate of  by evaluating the variance of the 
difference  between  and the moving average 

0 er (e H ∗∗

rδ (r H ∗∗

2 2
0

2 2
0

( )exp[ ( ) /

( )
exp[ ( ) / ]

j j k
j

k
j k

j

r H H H r

r H
H H r

∗∗ ∗∗ ∗∗

∗∗
∗∗ ∗∗

− −

=
− −

∑

∑

]

 (30) 

If the same moving average filter is applied to 2 (r r rδ = − 2)  we obtain following estimate of 
: ( )e H ∗∗
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2 2
0

2
2 2

0

[ ( ) ( )] exp[ ( ) / ]

exp[ ( ) / ]

j j j k
j

k
j k

2

j

r H r H H H r

e
H H r

∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗

− − −

≈
− −

∑

∑
 (31) 

An interpolation  of the error-free residuals at the points  is performed using a 
least-squares collocation based on the covariance matrices  of ,  of  and 

, and  of , defined as: 

(̂ )kd x 1, , Nx x…
ddC ( )kd H ∗∗

d̂dC (̂ )kd x
( kd H ∗∗) )

…

eeC ( ke H ∗∗

ˆ

2

[ ] ( ) , , 1

[ ] ( ) , 1 , 1

[ ] , , 1

dd kj d k j

kj d k jdd

ee kj k kj

C H H k j n

C x H k N j n

e k j nδ

∗∗ ∗∗

∗∗

= − =

= − = =

= =

C

C

C

…

…

…

 (32) 

where  if 1kjδ = j k=  and  else. The interpolated residuals  are 
given by: 

0kjδ = 1
ˆ ˆ ˆ[ ( ) ( )]nd x d x=d …

1
ˆ ˆˆ

ˆ ( eedd dd
−= +d C C C ) d

r<
r ˆr r d∆ = −

0r

r

 (33) 

with . The estimated errors  of  are given by the diagonal elements of 
the error matrix: 

1[ ( ) ( )]nd H d H∗∗ ∗∗=d … ê d̂

1
ˆˆ ˆ ˆ( )dd eedd dd dd

−= − +E C C C C CT  (34) 

6.11. Filtering the residuals 

The autocorrelation model of the residuals calculated by CODICA is usually accurate. However, it 
is very difficult to find a model that applies to all possible situations, and the human brain has a 
superior capacity in distinguishing a regular pattern from noise. Therefore, the user has the op-
portunity to correct the model proposed by CODICA to make the interpolated residuals  
closer to the actual residuals or, on the opposite, to make  smoother. To do so, the user is 
asked to enter his “estimate”  of the correlation length . If the user has the feeling that 

 should be closer to the actual residuals, he enters r . If the user has the feeling that 
 still contain some noise, he enters . Let  be the difference between 

the actual residuals r and their interpolation . If , CODICA uses a least-squares 
collocation to obtain an interpolation  of : 

(̂ )kd x
(̂ )kd x

usr
0r 0r

(̂ )kd x usr
0 0

(̂ )kd x usr
0 0r >

d̂ usr
0r <

r̂∆ r∆

1
ˆ ˆˆˆ ( )eedd dd

−∆ = + ∆r C C C  (35) 

where the covariance matrices  and  are calculated using equations (30,32) with  
instead of . The “corrected” interpolation 

d̂dC ddC usr
0r

0r d  is then given by:  

ˆ ˆ= +∆d d r

0r

 (36) 

On the other hand, if , CODICA uses a least-squares collocation to obtain a smooth 
version 

usr
0r >

d  of : d̂

1
ˆ ˆˆ

ˆ ˆ( )eedd dd
−= + +d C C C d ∆r  (37) 
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with  as in equation (35). The covariance matrices  and  are calculated using equation 
(30,32) with  instead of . 

ˆ∆r d̂dC ddC
usr
0r 0r

The first derivative ′d  of d  is needed to calculate the coercivity distribution, and is obtained 
from equations (33,35-37) by replacing with its derivative , given by: d̂dC d̂d

′C

ˆ[ ] ( ) , 1 , 1
kkj x d k jdd C x H k N j n∗∗′ = ∂ − = =C … …  (38) 

The error estimate of d  is given by equation (34) and that of ′d  by the diagonal elements of the 
error matrix: 

1
ˆˆ ˆ ˆ( )dd eedd dd dd

−′ ′′ ′= − +E C C C C C T′  (39) 

with 

ˆ[ ] ( ) , , 1
k kkj x x d k jdd C x x k j N′′ = ∂ − =C …  (40) 

6.12. Filtered magnetization curve 

The filtered magnetization curve ( )M H  is calculated from d  by inverting the steps described in 
sections 6.2, 6.5, 6.6, 6.9. Hence: 

1

1 1

( ) [ ( ) ( ) ] ( )

( ) , ( )

nM H S d H P H H U H

H H H H

∗∗ ∗ ∗
+

∗ ∗− ∗∗ − ∗

= + + +

= =P P
 (41) 

The estimated error ( )M Hδ  of ( )M H  is: 

1( ) [ ( ) ( ) ] ( )nM H S d x P H H d xδ ∗ ∗
+′= + + δ  (42) 

where ( )d xδ  is the estimated error of ( )d x . 

6.13. Coercivity distributions 

The coercivity distribution  on a linear field scale is the derivative of equation (41) with 
respect to H : 

( )H HM

1( ) ( ) [ ( ) ( ) ][ ( ) ( ) ( ) 1]

( ) ( )

H n nH H S d x P H H d x H P H

H U H

∗ ∗ ∗ ∗ ∗
+

′′ ′ ′ ′= + + +

′ ′

M P P

P
1+ + +

 (43) 

The estimated error  of  is: ( )H HδM ( )H HM

1( ) ( ) [ ( ) ( ) ] ( ) ( )H nH H S d x P H H d x Hδ ∗ ∗ ∗
+

′′ ′ ′= + +M P Pδ ∗  (44) 

The coercivity distribution  and its error  on a  scale are given by: log ( )H HM log ( )H HδM 10log

log

log

(log ) ( ) ln10

(log ) ( ) ln10

H H

H H

H H H

H H Hδ δ

=

=

M M

M M
 (45) 
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The coercivity distribution  and its error  on a -scale are given by: ( )pH HM ( )pH HδM pH

1 1

1 1

( ) ( )

( ) (

p

p

p p
HH

p p
HH

H p H H

H p H Hδ δ

− −

− −

=

=

M M

M M )
 (46) 
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Appendix A 

Tables of appropriate coercivity distribution units in the SI and the cgs system. [  is the  mag-
netization unit (magnetic moment per unit volume or unit mass), [  is the magnetic field unit. 

]M
]H

Magnetization, 
linear scale 

Magnetization 
generic unit [ ]  M

Magnetization 
SI unit: A/m 

Magnetization 
SI unit: Am2/kg 

Magnetization 
cgs unit: emu/g 

Manetic field H  
generic unit [ ]  H

1[ ][ ]M H −     

Manetic field H  
SI unit: A/m 

 dimensionsless 
(eq. 1) 

3m /kg  
(eq. 1) 

avoid this 
combination 

Magnetic induction  0Hµ
SI unit: T 
SI unit: mT 

 dimensionsless 
(eq. 1) ×  0µ
(eq. 1) ×  3

010 µ

3m /kg  
(eq. 1) ×  0µ
(eq. 1) ×  3

010 µ

avoid this 
combination 

Magnetic field H  
gcs unit: Oe 

 avoid this 
combination 

avoid this 
combination 

1 1emuOe g− −  

 
ARM susceptibility, 
linear scale 

susceptibility 
generic unit  1[ ][ ]M H −

susceptibility 
SI unit: none 

susceptibility 
SI unit: m3/kg 

susceptibility 
cgs unit: emu/(Oe g) 

Manetic field H  
generic unit [ ]  H

2[ ][ ]M H −     

Manetic field H  
SI unit: A/m 

 1A m−  
 (eq. 1) 

4 1m kg A− −1  
(eq. 1) 

avoid this 
combination 

Magnetic induction  0Hµ
SI unit: T 
SI unit: mT 

 1A m−  
(eq. 1) ×  0µ
(eq. 1) ×  3

010 µ

4 1m kg A− −1  
(eq. 1) ×  0µ
(eq. 1) ×  3

010 µ

avoid this 
combination 

Magnetic field H  
gcs unit: Oe 

 avoid this 
combination 

avoid this 
combination 

2 1emuOe g− −  

 
Magnetization, 
logarithmic scale 

Magnetization 
generic unit [ ]  M

Magnetization 
SI unit : A/m 

Magnetization 
SI unit : Am2/kg 

Magnetization 
cgs unit : emu/g 

Manetic field H  
generic unit [ ]  H

[ ]M     

Manetic field H  
SI unit: A/m 

 A/m  
(eq. 4) 

2Am /kg  
(eq. 4) 

avoid this 
combination 

Magnetic induction  0Hµ
SI unit: T 
SI unit: mT 

 A/m   
(eq. 4)  
(eq. 4)  

2Am /kg  
(eq. 4)  
(eq. 4)  

avoid this 
combination 

Magnetic field H  
gcs unit: Oe 

 avoid this 
combination 

avoid this 
combination 

1emu g−  

 
ARM susceptibility, 
logarithmic scale 

susceptibility 
generic unit  1[ ][ ]M H −

susceptibility 
SI unit : none 

susceptibility 
SI unit : m3/kg 

susceptibility 
cgs unit : emu/(Oe g) 

Manetic field H  
generic unit [ ]  H

1[ ][ ]M H −     

Manetic field H  
SI unit: A/m 

 dimensionsless 
 (eq. 4) 

3 1m kg−  
(eq. 4) 

avoid this 
combination 

Magnetic induction  0Hµ
SI unit: T 
SI unit: mT 

 dimensionsless 
(eq. 4) 
(eq. 4)  

3 1m kg−  
(eq. 4)  
(eq. 4)  

avoid this 
combination 

Magnetic field H  
gcs unit: Oe 

 avoid this 
combination 

avoid this 
combination 

1 1emuOe g− −  
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Appendix B 

Suggested empirical field correction table for AF demagnetization curves obtained with a 2G 
cryogenic magnetometer with build-in AF unit: 
 

Range of AF fields (mT) Suggested correction factor ∆  

corrH H= +∆  
0  –  9.9 
10 – 29.9 
30  –  39.9 
40 –  49.9 
50 – 69.9 
70 – 79.9 
80 – 89.9 
90 – 109.9 
110 –  139.9 
140 – 149.9 
150 – 179.9 
180 – 300 

+0 
+0.254 
+0.465 
–0.104 
+0.104 
+0.25 
+0.10 
+0.65 
+0.95 
+0.35 
+0.55 
+0.55 
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Improtant notice 

This version (2.1) of GECA (GEneralized Coercivity Analyzer) is almost identical with the previous 
version 2.0 that is described in this manual. Since GECA is going to be deeply revised in the near 
future, this manual has not been updated. Please consider the following differences of GECA 2.1 
with respect to the manual: 

• Since some users reported difficulties in using the characters “{“ and “}” in the prompt windows, 
their need has been eliminated in GECA 2.1. Please ignore these characters in all examples 
provided in the manual. For example, if the manual tells you to enter {0,2}, type 0,2 instead. 
Accordingly, {} is replaced by no character (just click the “OK” button of the prompt window 
without typing anything). 

• You can now model a coercivity distribution with a maximum number of 5 components, 
instead of 4. 

 
Install GECA 

Requirements 

To run GECA 2.1 you need Mathematica 5.0 and later versions installed on a Windows OS. At least 
128 MB RAM and a 1 GHz CPU are recommended. 

Install GECA 2.1 

To install GECA 2.1, copy the source code file  MAG_MIX_1/GECA/Install/Geca.m  and the file 
MAG_MIX_1/GECA/Install/components.txt  into the following directory: 
C:/.../Wolfram Research/Mathematica/5.0/AddOns/StandardPackages/Utilities 
whereby  C:/.../  depends on the installation of Mathematica on your computer. 
 
WARNING 

The packages Codica.m anf Geca.m are incompatible. Load only one of them in a Mathematica 
session. If you need both programs, load and use first CODICA. When you are finished with 
CODICA close the Mathematica session. Then, open the same or another Mathematica notebook 
and load GECA. This problem will be fixed with the next version of GECA. 
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Introduction 
 
The program GECA (GEneralized Coercivity Analyzer) is part of the package MAG-MIX. GECA 
performs a component analysis based on special generalized functions which can fit the coercivity 
distributions of natural and artificial magnetic components particularly well. It also performs a Pear-
son’s  goodness of fit test to evaluate the number of functions required to model a coercivity di-
stribution. Finally, GECA performs an error estimation and calculate the cofidence limits for each 
model parameter. 

2χ

Read carefully this manual to learn about GECA and take full advantage from the different pos-
sibilities offered by the program to perform a component analysis and verify its significance. This 
manual contains a theoretical part, which gives you the background to understand the basic ideas of 
GECA, and a practical part, which guides you through each step of the program. You can practice 
with the examples delivered together with this program. GECA is designed to work optimally on 
coercivity distributions calculated with CODICA and stored in files with extention .slog. 
Click on the following topics to see the contents of this manual: 
 
Theoretical background: coercivity distributions 2 
 • Finite mixture models 2  
 • logarithmic Gaussian functions 2 
 • Skewed Generalized Gaussian functions (SGG) 3 
 • distribution parameters 3 
 
Some aspects of component analysis 5 
 
Performing and testing a component analysis 8 
 • merit function 8 
 • mean squared residuals 8 
 • Chi-square estimator 8 
 • local and global minima of the merit function 9 
 • Pearson´s Chi-square goodness of fit test 11 
 
A program example 14 
 
Cautionary note 35 
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Theoretical background: coercivity distributions 

A group of magnetic grains with similar chemical and physical properties, distributed around 
characteristic values, is called a magnetic component. Examples of magnetic components are pedo-
genic magnetite (nanometric magnetite perticles with a wide grain size distribution), and magneto-
somes (prismatic magnetite with a very narrow grain size distribution between 40 nm and 80 nm). 
Magnetic components have a simple-shaped, unimodal distribution of coercivities. Commonly, the 
coercivity distribution of a single magnetic component is modeled with a logarithmic Gaussian func-
tion: 
 

2

2

log ( / )1
( , , ) exp

2 2

x
G x

x

µ
µ σ

πσ σ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (1) 

 
In the literature, x  is identified with the magnetic field H ,  is the median destructive or acqui-
sition field , called also MDF and MAD respectively, and σ  the dispersion parameter DP. 
However, not all coercivity distributions can be modeled appropriately with (1). Experimental and 
theoretical coercivity distributions of single components are better described by 

µ

1/2H

distribution func-
tions with four parameters. The two additional parameters control the skewness and the squareness 
of the distribution. 
The coercivity distribution  of a mixture of different magnetic components may be considered 
as a linear combination of the coercivity distributions of the single components: 

( )f H

 

r
1

( ) ( )
n

i i i i
i

f H c M f H
=

= ∑ | θ

)i
)i

 (2) 

 
where  and  are the concentration and the saturated magnetization of the i-th component 
respectively, and  is the corresponding coercivity distribution with the parameters 

. Equation (2) is called a finite mixture model, and  are the so-called end 
members. Equation (2) assumes that the magnetization of all components adds linearly (linear add-
itivity). This assumption does not hold in case of magnetic interactions between the magnetic grains 
of different components. However, magnetic interactions between different components are not 
likely to occur in natural samples, since each component is expected to have a different origin and to 
hold different places within a nonmagnetic matrix. On the other hand, magnetic interactions within 
the same component are possible, but they do not affect the linear additivity law. 

ic riM

(if H | θ

1( , , )i i ikθ θθ = … (if H | θ

Coercivity distributions of single magnetic components are described by probability density func-
tions (PDF). The shape of a PDF is controlled by a set of distribution centers  with related 
dispersion parameters , with n .  Special cases are given when  (  is the median,  
the mean deviation),  (  is the mean,  the standard deviation), and n  (µ  is the 
mid-range and σ  the half-range). The dispersion parameter DP corresponds to  on a logarith-
mic field scale. The symmetry of a PDF is described by the coefficient of skewness , where 

nµ

nσ ∈ 1n = 1µ 1σ
2n = 2µ 2σ → ∞ ∞

∞ 2σ
s
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3
3 2/s σ σ= 3

3−
. Symmetric distributions are characterized by  and . The curvature of a 

PDF is described by the coefficient of excess kurtosis k , where . The Gaussian PDF 
is characterized by . 

0s = 2nµ µ=
4 4
4 2/k σ σ=

0k =
The description of non-Gaussian PDF involves the use of functions with more than two independent 
parameters. It is of great advantage if such functions maintain the general properties of a Gauss PDF: 
the -th derivative should exist over  and  for all values of n . Furthermore, the 
Gaussian PDF should be a particular case of such functions. A good candidate is the generalized 
Gaussian distribution GG , known also as the general error distribution. The Gaussian PDF is a spe-
cial case of GG  distributions. Other special cases are the Laplace distribution and the box 
distribution. The GG  distribution is symmetric: . In GECA, a particular set of skewed genera-
lized Gaussian distributions, called SGG, is used to model single components. A SGG function is 
given by: 

n nσ < ∞ ∈

0s =

 

1 / /

1 1/ /

1 1
( , , , , ) exp ln

2 22 (1 1/ )

pqx x q qx x q

p qx x q

qe q e e e
SGG x q p

p e e
µ σ

σ

∗ ∗ ∗ ∗

∗ ∗

−

+

⎡ ⎤⎛ ⎞+ + ⎟⎜⎢ ⎥= − ⎟⎜ ⎟⎢ ⎥⎜⎜Γ + + ⎝ ⎠⎟⎣ ⎦
 (3) 

with , , and ( )/x x µ σ∗ = − logx H= 0 q< ≤ 1 . The GG distribution is a special case of (3) for 
, and the Gauss distribution is a special case of (3) with  and . The relation 

between the distribution parameters , σ , q ,  and some statistical properties is given in Table 1. 
1q = 1q = 2p =

µ p

 
Distribution 
properties 

Definition Relation with the distribution 
parameters 

Comments 

Median 
/2xx  

1/2

1( ) d 2

x

f x x
−∞

=∫  
1/2x µ=  

/2xx  is also called MDF or 

MAF 
Mean  

2µ  
2 ( ) df x x xµ

+∞

−∞

= ∫  
( )2 1 0.8566

s kµ µ≈ + +  
for  1, 2q p→ →

generally not used in the 
literature 

Standard 
deviation 

2σ  
 

2 2
2 2( )( ) df x x xσ µ

+∞

−∞

= −∫  ( )( )2 2
2 1 0.856 1 | |/ 3k sσ σ= + −  

for  1, 2q p→ →

2σ  is also called DP 

Skewness 
s  
 

3 3
3 2

3 3
3 2

/

( )( ) d

s

f x x x

σ σ

σ µ
+∞

−∞

=

= −∫
 

( ) (26 sgn 1 1 1.856s q q )≈ − − + 0q >k  : left skewed 
0q < : right skewed 

Kurtosis 
k  
 

4 4
3 2

4 4
4 2

/ 3

( )( ) d

s

f x x x

σ σ

σ µ
+∞

−∞

= −

= −∫
 

2k p≈ −  2p > : box-shaped 
2p < : tip-shaped 

Table 1: Relation between statistical distribution properties and distribution parameters for a SGG 
function. Except for the median, the relations are not analytical; approximations are given in the 
case of small deviations from a Gaussian distribution. 
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Examples of SGG functions with different 
parameters are given in Fig. 1. The parame-
ters of the coercivity distribution of some 
calculated and measured coercivity distribu-
tions are plotted in Fig. 2. 
 
 
 
 
Fig. 1: Examples of SGG distributions. (a) 
Some particular cases with , 2  
and  are plotted. The skewness of all 
curves is zero. Furthermore,  for a 
Laplace distribution,  for a Gauss 
distribution and  defines a box di-
stribution. (b) Some left-skewed SGG distri-
butions with  and 2  are 
plotted. The SGG distribution with q  
0.4951 is an excellent approximation of the 
logarithmic plot of a negative exponential di-
stribution. 

0µ = 1σ =
1q =

1

=

p =
2p =

p = ∞

0µ = 0.5484σ =

−4σ −2σ 2σ 4σ0

= 1p

= ∞p

= 2p

0.7/σ µ =

=

0

1q

(a)

 
 

−σ σ−2σ 0 2σ

1/σ

q = 1

q = 0.4951

q = 0.3 (b)

µ = 0
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Fig. 2: Coercivity distribution parameters , ,  and  for the AF demagnetization of IRM in 
various synthetic and natural samples. Numbers beside the points indicate the grain size in µm. (a) 
Scatter plot of  and σ . The dashed line indicates the value of σ  for a negative exponential 
distribution. (b) Scatter plot of q  and . The cross point of the dashed lines corresponds to the 
values of q  and  for a logarithmic Gaussian distribution. All samples show significant deviation 
form a logarithmic Gaussian distribution. All parameters of sized magnetite are intermediate be-
tween those of a logarithmic Gaussian distribution and those of an exponential distribution. 
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Some aspects of component analysis 

The result of a component analysis depends upon the PDF chosen to model the end-member coer-
civity distributions, and particularly on the number of parameters assigned to each PDF. Strong 
differences exist between the results obtained with a linear combination of Gaussian distributions on 
the one hand, and a linear combination of SGG distributions on the other. Since finite mixture mo-
dels with non-Gaussian coercivity distributions have not been reported in the literature, it is not pos-
sible to decide from a-priori information which kind of PDF should be used as a basis for a finite 
mixture model. From the mathematical point of view, all PDFs are equivalent, since the goodness of 
fit which can be reached with a particular model depends only upon the total number of parameters 
assumed, regardless of how they are assigned to individual components. Generally, the use of few 
PDFs with more distribution parameters, instead of a large number of distributions with fewer distri-
bution parameters leads to results of the fitting model which are more stable against measurement 
errors. The stable behavior of a fitting with SGG distributions can be explained by the fact that small 
deviations from an ideal coercivity distribution, which arise from measurement errors, are taken into 
account by variations in skewness and kurtosis, rather than by variations in the contributions of the 
single components. Obviously, the values obtained for skewness and kurtosis may not be significant 
at all. A similar stability can be obtained with Gaussian functions if some of them are grouped as if 
they were one component. However, it is not always evident which distributions group together, and 
multiple solutions are often possible. The aspects discussed above are illustrated with the examples 
of Fig. 3 and Fig. 4. Both figures show the results of a component analysis performed with GECA on 
the coercivity distribution of a sample of urban particulate matter. In Fig. 3, the component analysis 
is performed with logarithmic Gaussian functions. Four logarithmic Gaussian functions are needed 
to fit the measured data so that the misfit between model and data is compatible the measurement 
errors. However, it is impossible to identify these four distributions with an equivalent number of 
magnetic components. In Fig. 4, the component analysis is performed with SGG functions. The mea-
surements are already well fitted with one SGG function, however, the measured and the modeled 
coercivity distributions differens significantly. This model could be adequate to describe low-
precision measurements of the same sample. Two SGG functions fit the data within the margins 
given by the measurement errors. However, multiple solutions are possible, but only one solution 
minimize the difference between model and measurements. The other solutions imply rather uncom-
mon shapes for the coercivity distribution of the individual components, which are not likely occur 
in natural samples. 
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Fig. 3: Component analysis on a sample of urban atmospheric dust collected in Zürich, Switzerland. 
The component analysis is performed with logarithmic Gaussian functions. Results of the component 
analysis are shown in (a), (c) and (e). The gray pair of line indicates the confidence limits of the 
measured coercivity distribution. The blue line is the modelled coercivity distribution, expressed as 
the sum of the logarithmic Gaussian distributions (red, green, violet and light blue). Confidence 
limits are plotted around each function. Below each plot, the difference between measured and 
modelled curve is drawn in blue; the gray pair of curves indicates the amplitude of the measurement 
errors. The mean quadratic residuals of each model are plotted in (b), (d) and (f) as a function of the 
amplitude of the logarithmic Gaussian function labeled with the same color. The solutions plotted in 
(a), (c) and (e) represents the absolute minima of (b), (d) and (f). 
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Fig. 4: Component analysis of the same sample as in Fig. 3. The component analysis is performed 
with SGG functions. The same notation as in Fig. 3 is used for the plots. (a) Component analysis 
with one SGG function. The modeled coercivity distributions is significantly different from the 
measured distribution. (b) Mean quadratic residuals of a model with two SGG functions, plotted as a 
function of the amplitude of one function. Different local minima which correspond to stable solu-
tions of the component analysis are labeled with numbers. The corresponding solutions are plotted 
in (c), (d), (e) and (f). The solution plotted in (c) corresponds to the global minimum of (b) and the 
resulting components are compatible with the coercivity distributions of natural dust (red), and 
combustion products of motor vehicles (green). The solutions corresponding to the other local mi-
nima of (b) are not realistic. 
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The fundamental questions related to component analysis are: 
• How many components are needed to fit a given coercivity distribution? 
• Are multiple solutions possible? If yes, which solution is correct? 
The answer to these questions is not simple. In the example of Fig. 4 the number of components and 
the identification of the correct solution among multipe solutions is evident. However, this is not al-
ways possible, especially if good measurements are not available, or if the coercivity distributions of 
individual components are too widely overlapped. In this case, some additional information is 
needed to put appropriate constraints to the number of end-members and to their distribution para-
meters. 
 
 
 
Performing and testing a component analysis 

When component analysis is performed, a modeled coercivity distribution  with parameters 
 is compared with the measured coercivity distribution, given by a set of numerical 

values  with measurement errors 

( | )f x θ

1( , , )nθ θ= …θ
( , )i i ix f f± δ ifδ . A solution of the component analysis is repre-

sented by a set of values of θ  which minimizes a so-called merit function . The merit function 
is an estimation of the difference between the modeled and the measured curve:  if the model 
is identical with the measurements. Examples of 

( )ε θ
0ε =

( )ε θ  are the mean squared residual: 
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used for a least-squares fitting, and the  estimator: 2χ
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used for a minimum  fitting. GECA uses following weighted version of the  estimator: 2χ 2χ
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where  are the relative errors. In this case, measurement points affected by a large relative 
error are less considered for the component analysis. Equation (6) can be rewritten as: 
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If  originates from the sum of a finite number 
of elementary contributions,  is a Poisson distri-
buted variable, and . An experimental 
confirmation of this assumption is shown in Fig. 5. 
After these considerations,  and 

 is used by GECA as an improved merit 
function with respect to (6), since the randomizing 
effect of the measurement errors on the weighting 
factors  is removed. 

( )f x
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Generally, the merit function  has several 
local minima , which correspond 
to stable solutions  of the component analy-
sis. Among these minima, there is an absolute mi-
nimum . Depending on the star-
ting values  of , one of these solutions is at-
tained by GECA.  

(ε θ

min min(ε ε= θ

minθ

MIN MIN(ε ε= θ

iniθ θ

If the model used for component analysis is ade-
quate and if there are no measurement errors, 

. Let n  be the number of magnetic 
components and m  the number of end-member 
functions used in the model. Then,  for 

 and  for m , so that the 
number of components can be easily guessed (Fig. 
6a). In case of an inadequate model, the end-mem-
ber functions cannot reproduce exactly the coerci-
vity distribution of all magnetic components, and 

, even without measurement errors.  

MIN 0ε =

MIN 0ε >
m n< MIN 0ε = ≥

MIN 0ε >
 
 
Fig. 5: Mean measurement error of the coercivity distribution of six samples of loess, soil, lake se-
diments, marine sediments and atmospheric particulate matter. The absolute error  and the 
relative error  are plotted in (a) and (c), respectively. In (b), the absolute error is 
normalized by the square root of . The field unit is mT. All curves are normalized by their 
value at 10 mT. 
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Fig. 6: Dependence of the merit 
function  on the parameters 
of the model chosen for fitting a 
coercivity distribution. In (a) a 
noise-free coercivity distribution 
with  magnetic components 
is fitted with an adequate model 
with  end-member functions. 
The functions are assumed to re-
produce exactly the coercivity di-
stribution of each component. If 

, some components cannot 
be considered into the model and 

( )ε θ

3n =

m

m n<

( ) 0ε >θ ; on the other hand 
( ) 0ε =θ  for a given combination 

MIN=θ θ  of parameters when 
. The number of compo-

nents can be easily guessed. The 
situation becomes more complex 
in (b), where measurement errors 
are taken into account. In this 
case, there is always a misfit be-
tween model and measurements, 

and MIN  decreases monotonically as the number of end-members taken into account by the 
model is increased. In this case, the number of components is guessed with the help of a Pearson’s 

 test. According to this test, MIN  is compared with the expected value of ε  (dashed line). If  

MIN  is compatible with the expected value within given confidence limits (dotted lines), the 
model is accepted. If MIN  is too large, the modeled coercivity distribution is significantly dif-
ferent from the measured coercivity distribution and more parameters should be included in the 
model. On the other hand, if MIN  is too small, the model fits the measured data unrealistically 
well and random effects produced by the measurement errors are included in some parameters 
which are not significant. The model is accepted if MIN

m n>

(ε θ )

)
)

)

)

)

2χ (ε θ
(ε θ

(ε θ

(ε θ

(ε θ  belongs to the range of values given by 
the confidence limits. The complex dependence of the merit function on the model parameters is 
illustrated in (c) for the case of a model with a fixed number of end-member functions which  
approximately fit the coercivity distribution of all magnetic components. These end-member func-
tions produce a small misfit between model and data, even is the measurement errors are not 
considered (dashed curve). Nevertheless, there is only one stable solution  of the component 
analysis (green point), which corresponds to an absolute minimum of . If the measurement 
errors are taken into account, the shape of 

∗θ
( )ε θ

( )ε θ  becomes rather complex, with numerous local 
minima . Some of these local minima represent possible solutions which fits the measu-
rements as good as the absolute minimum MIN

min(ε θ )
)(ε θ , even if they do not model the coercivity 

distribution of the real components. The absolute minimum (red point) represents a solution MINθ  
which is still close to the realitiy. With larger measurement errors, this could not be the case, and a 
realistic solution may be given by a local minimum of ( )ε θ . 

θMIN θ *θmin
θ
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If an adequate model is used to fit data affected by measurement errors, , and  
for m  (

MIN 0ε > MIN 0ε →
→ ∞ Fig. 6b). 

Two fundamental questions arise at this point: 
1) How many end-member distributions should be considered for a component analysis? 
2) Is a particular solution θ̂  close to the (unknown) real solution ∗θ ? 
These questions can be easily answered only if the model chosen for the component analysis is 
adequate and the measurement errors are sufficiently small. The first condition can be approximati-
vely attained by using a set of SGG functions to model the coercivity distributions of the magnetic 
components. SGG functions are able to reproduce all fundamental characteristics of the coercivity 
distribution of a single component (median, dispersion parameter, skewness and kurtosis). 
If the measurement errors are small enough, the solution MINθ  which corresponds to a global mini-
mum of  is close to the real solution ( )ε θ ∗θ  (Fig. 6c). In case of large measurement errors, the real 
solution  may be close to one or more a local minima of ∗θ ( )ε θ . In this case, additional independent 
information are needed to individuate the correct solution among all possible solutions . minθ
The problem of the number of end-members to consider for a component analysis is evaluated with a 
Pearson’s  goodness of fit test. To perform this test, the statistical distribution of the  2χ 2χ estimator 
given in equation (5) is considered. The  estimator is a statistical variable which is distributed ac-
cording to a  distribution with  degrees of freedom, being  the number of indepen-
dent points to fit with a given model, and k  the number of model parameters. The expected value of  
the  estimator is . The confidence limits at a confidence level α  (generally ) 
are given by  and , with: 

2χ
2χ 1N k− − N

2χ 1N k− − 0.95α =
2

1;N k αχ − −
2

1;1N k αχ − − −

 

2
1;

2
1( ) d

N k p
N k t t p

χ
χ

− −

∞

− − =∫  (8) 

 
If , the model differs significantly from the measurements. The model should be 
refined by adding new parameters, eventually by considering an additional end-member function. If 

 the differences between model and measurements are unrealistically small. An 
excessive number of parameters allow the model to include random effects of the measurement 
errors. Consequently, some of these parameters are not significant. The model should be revised to 
include a smaller number of parameters, eventually by reducing the number of end-members or by 
keeping some parameters fixed. If  the model is acceptable. 

2 2
1;1N k αχ χ − − −>

2 2
1;N k αχ χ − −<

2 2 2
1; 1;1N k N kαχ χ χ− − − − −≤ ≤ α

To calculate the  estimator with equation (5) some knowledge about the measurement errors 2χ ifδ  
and the number of independent data points is necessary. The measurement errors are automatically 
estimated with CODICA, when a coercivity distribution is calculated from an acquisition/demagneti-
zation curve. The number of independent data points is more difficult to estimate. It is identical with 
the number of measurements if the measurement errors are equivalent to an ergodic noise signal, that 
is, when the autocorrelation of the noise signal is equivalent to a Dirac δ -function. 
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This is often not the case with real measure-
ments, where entire groups of measured points 
are affected by the same error. Furthermore, the 
coercivity distributions calculated by CODICA 
are low-pass filtered, and an autocorrelation of 
the remaining measurement errors is unavoida-
ble. GECA estimates the degrees of freedom of 
the fitting model by evaluating the residuals 
curve which results from the difference be-
tween the model and the measurements. The 
residuals curve contains a certain number of 
random oscillations around a mean value of ze-
ro. To reproduce these oscillations a minimum 
number l  of points is necessary, whose spacing 
defines the Nyquist frequency of the signal. 
GECA sets  equal to the number of zero 
crosses of the residuals. Obviously, the shape 
of the residuals curve depends on the model 
chosen for component analysis.  

1l −

 
 
Fig. 7: Examples of Pearson’s  test on the 
component analysis of a sample of urban at-
mospheric particulate matter. The gray and the 
blue curves are the measured and the modelled 
coercivity distributions, respectively. Curves 
labeled with other colors represent the coerci-
vity distributions of individual end-members. 
Below each plot, the difference between model 
and measurements is plotted (blue line) to-
gether with the measurement errors (pair of 
gray lines). In (a), a model with one SGG 
function is evaluated. The differences between 
model and measurements are too large, and the 
model is rejected. In (c) the a model with four 
SGG functions is rejected for the opposite 
reason: the model fits the data unrealistically 
well for the given measurement errors. A model 
with two SGG functions is represented in (b). In 
this case, the  statistics is compatible with 
the expected value within at a 95% confidence 
level, and the model is accepted. 
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A model with a small number of parameters produces a residuals curve with few, large oscillations. 
The more parameters are included in the model, the more oscillations characterize the residuals and 
the confidence limits of the  estimator become closer to the expected value. Consequently, mo-
dels with a too large number of parameters are rejected. An example of Pearson’s  test is shown 
in 

2χ
2χ

Figure 7 with the example of a sample of urban atmospheric particulate matter. In Fig. 7a, the 
coercivty distribution is fitted with one SGG function. The residuals curve has 5 zero crosses in the 
range considered for fitting, and GECA assumes  degrees of freedom for the  distribution. 
The confidence limits of  are 0.27 and 2.1, while  for that model, which is rejected. 
In Fig. 7b, two SGG functions are used for the component analysis. Now, , and the confi-
dence limits of  are 0.44 and 1.8. With  this model is acceptable. With four SGG 
functions (Fig. 7c),  and the confidence limits of  are 0.52 and 1.6, while  
for that model, which is rejected. 

6l = 2χ
2/lχ 2/ 8.lχ = 8

5

7

12l =
2/lχ 2/ 1.lχ =

18l = 2/lχ 2/ 0.3lχ =
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A program example 
 
In[1]:= <<Utilities`Geca` Load the program

 GECA v.2.1 for Mathematica 5.0 and later versions.  
 4/2005.  Distributed with the package MAG-MIX release 1, 04/0

Copyright 2005 by Ramon Egli. All rights reserved.  
 
In[2]:= Geca Start the program

 Data from file Enter file name
 C:/users/ramon/papers/fitting/WDKarm.slog 

 Checking the coercivity distribution... 

 Confidence limits of the coercivity distribution: Plot the distribution

Total magnetization:
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 Coercivity distribution is significant between -0.5 and 2.474 

 Fitting is performed in the range between -0.1957 and 2.396 Set the fitting range
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  Enter initial parameters (1)
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1.4
Initial distribution parameters:

a1 = 1.5
m1 = 1.7      s1 = 0.6
q1 = 0.5      p1 = 2.2

 

 Optimizing the distribution parameters. Please wait... Perform a component analysis (1)

 {a1=0.0015, m1=1.7, s1=0.6, q1=0.5, p1=2.2} 
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0.2

0.4
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0.8
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1.4
Optimized distribution parameters:

a1 = 1.454
m1 = 1.714    s1 = 0.6875
q1 = 0.4256   p1 = 3.076
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�1

�0.5

0.5

1 Residuals (modelled - measured) and
measurement errors
in % of the maximum value of
the coercivity distribution.

Dashed lines delimitate the interval
considered for the component analysis.

ChiSquare/#points: 8.8
Confidence limits: [0.52,1.9]

 

 Model and data are significantly different. Refine your model. 
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  Enter initial parameters (2)

−0.5 0 0.5 1 1.5 2
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1.4
Initial distribution parameters:

a1 = 0.7
m1 = 1.5      s1 = 0.4
q1 = 1.       p1 = 2.

a1 = 0.7
m1 = 1.9      s1 = 0.25
q1 = 1.       p1 = 2.

 

 Optimizing the distribution parameters. Please wait... Perform a component analysis (2)

 {a1=0.0007,m1=1.5,s1=0.4,a2=0.0007,m2=1.9,s2=0.25} 
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Optimized distribution parameters:

a1 = 0.9101
m1 = 1.517    s1 = 0.4363
q1 = 1.       p1 = 2.

a1 = 0.5428
m1 = 1.948    s1 = 0.2124
q1 = 1.       p1 = 2.
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1 Residuals (modelled - measured) and
measurement errors
in % of the maximum value of
the coercivity distribution.

Dashed lines delimitate the interval
considered for the component analysis.

ChiSquare/#points: 27.
Confidence limits: [0.52,1.9]

 

 Model and data are significantly different. Refine your model. 

 

 

 

 

 

 

 

 

 

 

 



GECA 2.1  reference manual  17 

  Enter initial parameters (3)
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Initial distribution parameters:

a1 = 0.75
m1 = 1.4      s1 = 0.45
q1 = 0.6      p1 = 2.

a1 = 0.7
m1 = 1.957    s1 = 0.235
q1 = 0.663    p1 = 2.

 

 

 Optimizing the distribution parameters. Please wait... Perform a component analysis (3)

 {a1=0.00075,m1=1.4,s1=0.45,q1=0.6,p1=2.,a2=0.0007} 
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Optimized distribution parameters:

a1 = 0.9217
m1 = 1.509    s1 = 0.4882
q1 = 0.6235   p1 = 2.023

a1 = 0.5348
m1 = 1.957    s1 = 0.235
q1 = 0.663    p1 = 2.
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1 Residuals (modelled - measured) and
measurement errors
in % of the maximum value of
the coercivity distribution.

Dashed lines delimitate the interval
considered for the component analysis.

ChiSquare/#points: 2.8
Confidence limits: [0.63,1.6]

 

 Model and data are significantly different. Refine your model. 
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  Enter initial parameters (4)

−0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Initial distribution parameters:

a1 = 0.9217
m1 = 1.509    s1 = 0.4882
q1 = 0.6235   p1 = 2.023

a1 = 0.5348
m1 = 1.957    s1 = 0.235
q1 = 0.663    p1 = 2.

 

 

 Optimizing the distribution parameters. Please wait... Perform a component analysis (4)

 {a1=0.0009217,m1=1.509,s1=0.4882,q1=0.6235,p1=2.023, 

  a2=0.0005348,m2=1.957,s2=0.235,q2=0.663,p2=2.} 

 FindMinimum::fmlim: The minimum could not be bracketed in 50 iterations. 

 {a1=0.0006243,m1=1.311,s1=0.4483,q1=0.4878,p1=2.171, 

  a2=0.0008625,m2=1.963,s2=0.2331,q2=0.7765,p2=2.107} 
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Optimized distribution parameters:

a1 = 0.7699
m1 = 1.412    s1 = 0.4699
q1 = 0.5537   p1 = 2.106

a1 = 0.6847
m1 = 1.962    s1 = 0.2329
q1 = 0.7221   p1 = 2.053

0 0.5 1 1.5 2

�1

�0.5

0.5

1 Residuals (modelled - measured) and
measurement errors
in % of the maximum value of
the coercivity distribution.

Dashed lines delimitate the interval
considered for the component analysis.

ChiSquare/#points: 1.5
Confidence limits: [0.59,1.7]

 

 Model and data are compatible. You may accept this component analysis. 
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  Systematic solution search

 Perform an automatic variation of the contribution of component #2:  

 This process takes several minutes. Please wait... 

 Decreasing contribution of component #2... 

 Increasing contribution of component #2... 

 Residuals as a function of the contribution of component #2 

 (Every 10th point in gray, first point is #21, red point is the starting solution) 
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  Choose initial parameters
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Initial distribution parameters:

a1 = 0.7989
m1 = 1.428    s1 = 0.4739
q1 = 0.5562   p1 = 2.108

a1 = 0.6556
m1 = 1.967    s1 = 0.2297
q1 = 0.7265   p1 = 2.052

 
 

 Optimizing the distribution parameters. Please wait... Perform a component analysis (5)

 {a1=0.0007989,m1=1.428,s1=0.4739,q1=0.5562,p1=2.108,a2=0.0006556, 

  m2=1.967,s2=0.2297,q2=0.7265,p2=2.052} 
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Optimized distribution parameters:

a1 = 0.7989
m1 = 1.428    s1 = 0.4739
q1 = 0.5562   p1 = 2.108

a1 = 0.6556
m1 = 1.967    s1 = 0.2297
q1 = 0.7265   p1 = 2.052

0 0.5 1 1.5 2

�1

�0.5

0.5

1 Residuals (modelled - measured) and
measurement errors
in % of the maximum value of
the coercivity distribution.

Dashed lines delimitate the interval
considered for the component analysis.

ChiSquare/#points: 1.5
Confidence limits: [0.59,1.7]

 

 Model and data are compatible. You may accept this component analysis. 
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 Calculating statistical parameters of the distributions... 

  Perform an error estimation

 Perform an error estimation of the distribution parameters with 64 error simulations. 

 Accuracy of the error estimation: 12.% 

 This process takes several minutes time. Please wait... 

 Error estimation of the statistical parameters. Please wait... 

 Calculating the confidence limits of the components. Please wait... 

 Parameters of component #1: Parameters of component #2: 

 a = 0.7989 ± 0.021 a = 0.6556 ± 0.021 

 µ = 1.428 ± 0.011 µ = 1.967 ± 0.0038 

 σ = 0.4739 ± 0.0029 σ = 0.4739 ± 0.0029 

 q = 0.5562 ± 0.0047 q = 0.7265 ± 0.0065 

 p = 2.108 ± 0.019 p = 2.052 ± 0.0082 

 MDF = 1.428 ± 0.011 MDF = 1.967 ± 0.0038 

 mean = 1.374 ± 0.012 mean = 1.957 ± 0.0044 

 DP = 0.4255 ± 0.0027 DP = 0.2165 ± 0.0024 

 skewness = -0.8043 ± 0.013 skewness = -0.2647 ± 0.015 

 kurtosis = 1.149 ± 0.026 kurtosis = 0.1122 ± 0.024 

 Result of the component analysis: 
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Total magnetization: 1.455 ± 0.029

a1 = 0.7989
MDF1 = 1.428     DP1 = 0.4255
sk1 = -0.8043    ku1 = 1.149

a2 = 0.6556
MDF2 = 1.967     DP2 = 0.2165
sk2 = -0.2647    ku2 = 0.1122

 

 Calculating the confidence limits of each component. Please wait... 

 Normalized components with confidence limits: 

�0.5 0 0.5 1 1.5 2 2.5

0.5

1.0

1.5
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Distribution parameters:

MDF1 = 1.428     DP1 = 0.4255
sk1 = -0.8043    ku1 = 1.149

MDF2 = 1.967     DP2 = 0.2165
sk2 = -0.2647    ku2 = 0.1122
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 Preparing data to an export format. Please wait... 

  Save results to a log file
 Printing results to:  components.dat 

  Save end-members

 Saving the coercivity distributions to WDKarm.comp :  
  Column #1: magnetic field, 
  Column #2: component #1    Column #3: error of component #1 
  Column #4: component #2    Column #5: error of component #2 

 END 
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Loading CODICA and running GECA 

To run GECA, open a new Mathematica notebook by clicking on the Mathematica program icon. 
Type <<Utilities`Geca` on the input prompt In[] and press the keys Shift + Enter to load 
CODICA. On the next input prompt type Geca and press the keys Shift + Enter to start GECA. 
From now on, the program asks you to enter specific commands step by step. In the following, all 
GECA commands are explained in order of appearance. 
Back to the program
 
 
Enter the name of the data file 

The prompt window on the right 
asks you to enter the name on the 
file which contains the coercivity 
distribution data. Type the path of 
the data file. You can skip interme-
diate directories if other files with 
the same name are not stored. The 
data file should be an ASCII file 
with three columns of numbers se-
parated by spaces or tabulators. The 
file should not contain comment li-
nes or text in general. The first co-
lumn is the scaled or unscaled field, 
the second column is the value of 
the coercivity distribution for the 
corresponding field. The third column is the relative error of the second column; 0.1 means 10% er-
ror. Output files of CODICA with extensions .slin, .slog and .spow are automatically 
accepted. It is strongly recommended to run GECA only on CODICA output files with extension 
.slog.  
Back to the program example
 
 
Plot the coercivity distribution 

The coercivity distribution is plotted together with the confidence limits given by the error estima-
tion stored in the file. If the maximal measurement error is less than 5% of the peak value of the 
coercivity distribution, only the confidence limit are plotted as a pair of gray lines. With errors larger 
than 5%, the coercivity distribution is plotted as a black line, together with the confidence limits. 
Within the plot, an estimation of the total magnetization is given. This estimation is obtained by 
integrating the coercivity distribution over the field range given by the data stored in the file. If satu-
ration is not reached within this range, the calculated value is an underestimation of the total 
magnetization. You can use the estimation of the total magnetization as a reference when you enter 
the initial distribution parameters. 
Back to the program example
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Set the fitting range 

GECA estimates a field range 
where the values of the coercivity 
distribution are significant. As a 
significance limit, a maximum 
relative error of 50% has been cho-
sen for the values of the coercivity 
distribution. You can enter a diffe-
rent range with the prompt window 
displayed on the right. If the coer-
civity distribution was calculated 
from a demagnetization curve, it is 
recommended to discard the data 
near the right end of the field 
range, because they could be af-
fected by truncation effects. Data 
outside the range you entered are displayed but are not considered for further calculations. 
Back to the program example
 
 
Enter initial distribution parameters 

You are asked to enter initial values for the parameters of the finite mixture model that will be used 
for the component analysis. GECA uses a set of one to four SGG functions to fit the measured coer-
civity distribution. Each SGG function is characterized by following five parameters: 
− amplitude  a: the area under the SGG function, which is equivalent to the magnetization of a 

component whose coercivity distribution is represented by this function. 
− median µ: this parameter corresponds to the median value of the function, also called median 

destructive field (MDF) or median acquisition field (MAF). 
− parameter for the standard deviation σ: this is the principal parameter which controls the standard 

deviation of the SGG function, also called the dispersion parameter DP. 
− parameter for the skewness q: this is the principal parameter which controls the skewness of a 

SGG function, with . Positive values of q  generate left skewed functions, negative 
values of q  generate right skewed functions. Symmetrical functions are characterized by . 
Generally, real coercivity distributions are characterized by . If you do not have 
independent informations about the starting parameters, set a value of q  near 1. 

1 q− ≤ ≤ 1
1q = ±

0.5 1q≤ ≤| |

− parameter for the kurtosis p: this is the principal parameter which controls the kurtosis of a SGG 
function. A logarithmic Gaussian distribution is characterized by . More squared functions 
are generated with , less squared distributions by . Common values for real coerci-
vity distributions are given by 1. . If you do not have independent information about 
the starting parameters, set . 

2p =
2p > 2p <

6 2.4p< <
2p =
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Enter the parameters as an ordered 
list: , , ,  and  of the first 
component, , , ,  and  of 
the second component, and so on, 
as in the example given in the 
prompt window shown to the right. 
The 

a µ σ q p
a µ σ q p

end-member distributions defi-
ned by the initial parameters you 
entered are plotted with different 
colors (red, green, violet and light 
blue). The modeled coercivity di-
stribution is given by the sum of all 
end-members and is plotted in blue, 
together with the measured coerci-
vity distribution (black/gray). The 
initial parameters should be chosen 
so, that the modeled coercivity di-
stribution is as close to the measu-
red coercivity distribution as possi-
ble. You can enter the initial para-
meters either with some knowledge 
about the magnetic components 
which are contributing to the mea-
sured distribution, or by try and er-
ror. In this last case you can reenter 
new initial parameters until you get 
a satisfactorily result. After ente-
ring the initial parameters, you are 
asked to keep some parameters 
fixed during the optimization. If 
you want to optimize all parame-
ters, type “{}”. Otherwise, enter the 
symbols for the fixed parameters in 
the next promt window. For exam-
ple, if you want to use a loga-
rithmic Gaussian function for the 
second end-member, set  and 

 as initial values for the cor-
responding SGG function, and keep 
these parameters fixed by entering 
“{q2,p2}” in the following prompt 
window. You can choose every 
combination of parameters to keep 
fixed. If you exactly know the para-
meters of one magnetic component, you can model this component by an end-member function with 
fixed values of  , , q  and . Then, only the magnetic contribution of this component, given by 

, will be optimized. 

1q =
2p =

µ σ p
a
It is recommended to start with a small number of end-members and a small number of parameters, 
and to use independent information about the number of magnetic components and their properties. 
You can then progressively increase the complexity of your model. Keep in mind that the 
complexity of a model increases exponentially with the number of parameters to optimize. If you 
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want to perform a component analysis with three SGG functions, you have to deal with a solution 
space in 15 dimensions. You will not have the possibility to perform a systematic solution search is 
such a space: if you try 5 initial values for each parameter, you should perform  
optimizations! You would probably find several stable solutions, but only one among them is correct 
and has a physical meaning. The parameters have a hierarchical structure: a  controls the amplitude 
of an end-member,  the “position” along the field axis, and  the “width”, q  the symmetry and  
the curvature. The amplitude is the most important parameter, the curvature is the less important. 
You can start with fixed values of , or fixed values of q  and p . Use logarithmic Gaussian 
functions to model magnetic components which are not saturated in the field range of the measured 
coercivity distribution. 

15 105 3 10= ×

µ σ p

p

In the program example, the measured coercivity distribution is similar to an asymmetric unimodal 
probability density function. There is no direct evidence for more than one magnetic component. 
Therefore, initial parameters for one SGG function have been entered in the program example. Since 
only 5 parameters have to be optimized, the component analysis is relatively simple and only one 
stable solution is expected. Therefore, it is not necessary to start with a modeled coercivity distri-
bution which is very close to the measured data. 
Back to the program example
 
 
Perform a component analysis 

GECA performs a component ana-
lysis by optimizing the initial para-
meters in a way that minimizes the 
squared residuals between model 
and measurements by using a Le-
venberg-Marquardt algorithm. The 
parameters to optimize are displa-
yed together with the correspon-
ding initial values. If the initial 
values were carefully chosen, the 
search for a solution is performed 
in a reasonable time with no more 
than 100 iterations. Otherwise, the 
search will take more than 100 
iterations or it will converge to an 
absurd solution. If a global or a lo-
cal minimum of the squared resi-
duals is not reached within 100 ite-
rations, a warning message appears 
and you will be asked to continue 
the search or stop it and plot the 
solution given by the last iteration. 
It is recommended to perform at 
least 200 iterations. The numerical 
values of the parameters are shown 
every 100 iterations and you can 
check how they change and if they 
converge to a meaningful result. 
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If a convergence to a stable solution cannot be obtained, interrupt the search for a solution by typing 
“n” in the prompt window and choose other initial parameters. 
The result of the component analysis is displayed exactly like the initial model. The same colors are 
used to label the end-members. Additionally, the difference between the model and the measu-
rements (blue line) is plotted below the result of the component analysis, together with the measu-
rement errors (pair of gray lines). The difference between model and measurements (called misfit in 
the following) should be of the same order of magnitude as the estimated measurement error. If the 
misfit is much larger than the estimated measurement error, the model is not able to account for the 
measurements: other parameters should be added to reduce the misfit. If the misfit is much smaller 
than the measurement error, the model chosen for the component analysis is able to fit the 
measurements very well but it is not significant: some of the model parameters do not have any phy-
sical meaning. In this case you should decrease the number of model parameters by reducing the 
number of end-members or by keeping some parameters fixed. If the misfit has the same amplitude 
as the estimated measurement error, the model may be adequate. Nevertheless, more than one solu-
tion witch satisfy this condition may exist. 
An adequate parameter to test the significance of a component analysis is the  2χ statistics. GECA 
gives an estimation of , where l  represents the 2/lχ degrees of freedom of the model. For a correct 
model, , where ,  are the 2 2 2

; ;l lαχ χ χ −≤ ≤ 1 α
2
;l αχ 2

;1l αχ − confidence limits at a given confidence level 
(usually 95%). GECA calculates the confidence limits with a 95% confidence level and displays 
them together with the estimation of . If ,  the model is significantly different from 
the measured data, and GECA suggests you to refine it by adding more parameters. If , 
not all model parameters are significant and a warning message is displayed. In this case you should 
reduce the number of parameters. If , GECA suggests to accept the model. 

2/lχ 2 2
;1l αχ χ −>

2 2
;l αχ χ<

2 2 2
;l αχ χ χ −≤ ≤ ;1l α

In the program example, the component analysis with one SGG function is inadequate to model the 
measurements within the given error margins. 
Back to the program example
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Enter initial distribution parameters (2 logarithmic Gaussian functions) 

It is possible to run a new compo-
nent analysis with different initial 
parameters. After obtaining your 
first result, the input prompt on the 
right asks you for one of the follo-
wing actions: (1) type new initial 
parameters, (2) re-enter the initial 
parameters of the previous compo-
nent analysis, (3) enter the result of 
previos component analysis as a set 
of initial parameters. 
Since the component analysis with 
one component was not adequate, a 
more complex model with two lo-
garithmic Gaussian functions is u-
sed. The initial values for skewness and kurtosis are setted to zero by entering  and  for 
both components. These parame-
ters are kept fixed by entering 
“{q1,p1,q2,p2}” in the second pro-
mpt window. Initial parameters for 

,  and σ  are guessed until a 
relatively good agreement with the 
measured data is obtained. 

1q = 2p =

a µ

Back to the program example
 
 
 
 
 
 
 
 

 

Perform a component analysis (2 logarithmic Gaussian functions) 

The component analysis with two logarithmic Gaussian functions is inadequate to model the measu-
rements within the given error margins. The misfit between model and measurements is larger than 
that obtained with one SGG function, even if there is one more parameter to optimize. This example 
shows that logarithmic Gaussian functions are generally not suitable for modelling the coercivity 
distribution of single magnetic components. A good agreement between measurements and model is 
achieved only with 4 logarithmic Gaussian functions (Figure 3). Unfortunately, these functions can-
not be related to the coercivity distributions or real magnetic components. 
Back to the program example
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Enter initial distribution parameters (one component is known) 

The different sources of magnetic 
minerals for the sample taken as 
example are known from indepen-
dent investigations on urban atmo-
spheric dust samples collected in 
the same region. The two main 
sources are given by natural dust 
and by the products of combustion 
processes, mainly from motor vehi-
cles and from waste incineration. 
The coercivity distribution of the 
combustion products can be model-
led by a SGG function with 

, , , 
. These parameters are kept 

fixed during the component analy-
sis. Only the magnetization of the 
combustion products (given by a ) 
is unknown and is optimized, to-
gether with the unknown parame-
ters of natural dust. 

1.96µ = 0.235σ = 0.66q =
2p =

Back to the program example
 
 
 
 
 
 
 
 
 
 
Perform a component analysis (one component is known) 

This component analysis is characterized by a much better agreement with the measurements, if 
compared to the previous results. Six distribution parameters have been optimized. The same 
number of parameters has been used to perform a component analysis with two logarithmic Gaussian 
functions: nevertheless,  was almost one order of magnitude larger! This model is still signi-
ficantly different from the measurements. A reason for that could arise from small variations in the 
properties of the same magnetic component collected from different places. 

2/lχ

Back to the program example
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Enter initial distribution parameters (2 SGG functions) 

To take into account small varia-
tions in the magnetic properties of 
combustion products, the results of 
the previous component analysis 
are taken as initial values for a new 
component analysis where all 10 
distribution parameters are optimi-
zed. This is done by typing “r” to 
recall the result of the last 
component analysis. 
Back to the program example
 
 
 
 
 
 
Perform a component analysis (2 SGG functions) 

The model is now much more 
complex and the search for a stable 
solution needs more than 50 itera-
tions. A warning message appears 
and you are asked to stop or con-
tinue for other 50 steps. Finally a 
stable solution is reached. The di-
stribution parameters of the combu-
stion product did not change more 
than 10% with respect to the initial 
values, and the model is now com-
patible with the measurements wi-
thin the measurement errors. The 
solution of this component analysis 
is accepted, since it is compatible 
with the magnetic properties assu-
med initially for the combustion 
products. 
Back to the program example
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Perform a systematic solution search 

Stable solutions of the component 
analysis correspond to local mini-
ma of the merit function. The merit 
function can have several local mi-
nima for a given finite mixture mo-
del. One among them is a global 
minimum as well, and is usually 
considered as the acceptable solu-
tion. A solution which corresponds 
to a global minimum of the merit 
function is attained if the initial 
model is chosen to be close enough 
to the acceptable solution. Since 
this solution is usually unknown in 
advance, a sufficient number of ini-
tial models has to be tested in order 
to ensure that at least one will con-
verge to a global minimum of the 
merit function. If you try 5 initial 
values for each parameter of a mo-
del with two SGG functions, you 
should perform  optimi-
zations! GECA performs a selected 
search for a global minimum of the 
merit function, starting with the re-
sult of the last component analysis 
as initial model. You can select one 
end-member function, whose am-
plitude a  will be increased and de-
creased in steps of 1/100 of the 
total sample magnetization, starting form the solution of the last component analysis. After each 
step, the new solution is taken as an initial model for the next component analysis. As a result, the 
merit function is plotted for all possible amplitudes of the selected SGG function. In the program 
example, the last solution of the component analysis (red point) is close to the global minimum of 
the merit function. The sharp steps of the merit function are an effect of the sudden convergence of 
some distribution parameters to a different local minimum. You are asked to accept the solution of 
the last component analysis, indicated by a red point, if it corresponds to a global minimum of the 
merit function. 

10 75 1= 0

Back to the program example
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Choose initial distribution parameters from the systematic solution search 

You can check the distribution pa-
rameters which corresponds to va-
rious values of the merit function 
previously plotted. The merit func-
tion was calculated for 100 points 
(black dots in the last plot, every 
10th point is gray). You can enter 
the number of the point which cor-
responds to a particular value of the 
merit function you are interested in. 
In this way you can explore the 
solutions which correspond to va-
rious local minima and to the glo-
bal minimum of the merit function. 
This option is particularly useful in 
the case that several local minima exist, which are close to the global minimum. Due to the measure-
ment errors, a meaningful solution could be given by one of these local minima. You may evaluate 
different solutions with some independent information about the coercivity distribution expected for 
the individual magnetic components. In the program example, point number 46 is entered, which 
corresponds exactly to the global minimum of the merit function. 
Back to the program example
 
 
Perform a component analysis (representing a global minimum) 

The set of distribution parame-
ters which corresponds to a glo-
bal minimum of the merit func-
tion is taken as initial model for 
the last component analysis. In 
the program example, this is the 
final solution, which represents 
a finite mixture model which is 
compatible with the measure-
ments and with independent in-
formations about the properties 
of the individual magnetic com-
ponents. In other cases you may 
not accept this solution and enter 
a set of initial parameters which 
corresponds to other values of the merit function, until a satisfactory result is obtained. 
Back to the program example
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Perform an error estimation 

You can choose to perform an error 
estimation of the last component a-
nalysis. GECA will perform the er-
ror estimation by adding a random 
noise signal to the measured coer-
civity distribution. The standard de-
viation of the noise signal is chosen 
to be identical with the estimated 
measurement error for each value 
of the field. The new “noisy” coer-
civity distribution is fitted with the 
same set of end-member functions 
used for the last component ana-
lysis, whose solution is taken as the 
initial model. The result of the 
component analysis performed on the “noisy” coercivity distribution differs slightly from the result 
of the component analysis performed on the original coercivity distribution. The process of adding 
and adequate noise component to the original data and fitting the resulting coercivity distribution is 
repeated several times. GECA calculates the standard deviation of the component analysis results for 
each distribution parameter. These standard deviations are taken as an error estimation. At the same 
time, some statistical properties of the end-member functions are calculated as well, together with 
the related errors. The error estimation performed by GECA is quite time consuming, therefore you 
can choose the number of iterations to perform. With 64 iterations, an accuracy of 12% is expected 
for the error estimation. The relative accuracy of the error estimation, expressed in %, is given by 
100/ n , where  is the number of iterations used. The error estimation performed by GECA takes 
into account the effect of the measurement errors on a set of distribution parameters which is related 
to a particular local minimum of the merit function. The effect of measurement errors on the 

n

convergence of the component analysis to parameters which correspond to other local minima of the 
merit function is not considered. Therefore, the error estimation performed by GECA has to be 
considered as a lower limit for the real error of each parameter. Finally, all distribution parameters 
are displayed together with the estimated errors. Additionally, statistical parameters like the 
dispersion parameter DP, the mean, the skewness and the kurtosis are displayed with the related 
errors. The result of the component analysis is plotted again, together with the confidence limits of 
each end-member function. Finally, the normalized end-member distributions are plotted, together 
with their confidence limits. The area under the curve of each end-meber distribution is equal to one 
in this last plot. 
Back to the program example
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Save the component analysis results in a log file 

You can save the component ana-
lysis results to the log file compo-
nents.txt. You will find this 
file in the same folder where the 
program package CODICA is in-
stalled. The log file contains the re-
sults of all component analysis you 
decided to save, in form of a list of 
distribution parameters and statis-
tics for each end-member distribu-
tion. The error estimation of each 
parameter is stored as well, if you 
decided to run an error estimation 
with GECA. An example of the 
content of the log file is displayed 
below. 

Back to the program example
 
 
Save the end-members to a file 

The end-member distributions, to-
gether with their confidence limits, 
can be stored in a separated file as 
a list of columns with the numeri-
cal values of each function. The file 
will have the same name as the file 
where the original data for the 
coercivity distribution were stored, 
with extention .cum. This file will 
be stored in the same directory as 
the data file. An example is given 
below. 
Back to the program example
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Cautionary note 
 
GECA 2.1 has been tested more than 500 times with coercivity distributions of various artificial and 
natural samples and the most different combinations of initial parameters. Nevertheless, there is a 
remote possibility that particular uncommon data or parameter sets will produce evaluation pro-
blems. In this case, blue-written warning messages appear on the Mathematica front-end. If more 
than one of these messages is displayed, you may force-quit the Kernel of Mathematica as follows: 
in the top menu bar choose Kernel → Quit Kernel → Local. You can also exit from GECA at any 
time just by typing “abort” in any input prompt window. 
GECA 2.1 does not work on previous versions of Mathematica 5.0 because of a substantial rede-
finition of a minimum-search routine embedded in Mathematica 5.0. Updates of Mathematica will 
generally not affect the functionality of packages such as GECA, wich is expected to run on later 
versions. Use GECA 1.1 on previous versions of Mathematica 5.0. 
In case of problems, write to the author (Ramon Egli) at the address given at the beginning of the 
source code file Geca.m. Please save and send a copy of the Mathematica session you were using 
when a problem arises, together with the data file you analyzed with GECA. 
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